Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Figure S1. (a) XPS spectra of N-C and S/N-C samples; (b, c) high-resolution XPS spectra of C 1s and N 1s for the N-C sample.

Figure S2. SEM images of N-C nanofibers: (a) low magnification and (b) high magnification.

Figure S3. Nitrogen adsorption/desorption isotherms of N-C and S/N-C nanofibers.

	<i>S/N-C</i>	<i>N-C</i>
С	49.45	70.7
N	12.59	17.36
0	10.01	11.94
S	27.95	0

 Table S1 Element contents (%) in the N-C and S/N-C nanofibers.

Figure S4. Nyquist plots of EIS data for N-C and S/N-C nanofiber electrodes. The inset is the equivalent circuit diagram.

Materials	Doped	Capacity	Cycles	Tested current	References
	amount	(mAh g ⁻¹)		(mA g ⁻¹)	
	(S, N, %)				
S/N-doped mesoporous	27.95 w% for S	335.8 (426.3)	800 (400)	5000 (100)	This work
carbon nanofibers	12.59 w% for N				
S-doped N-rich carbon	9.19 w% for S	211	1 000	1 000	Ref. 1
nanosheets	20.01 w% for N				
N, S-doped carbon	2.8 w% for S	164.3	6 000	10 000	Ref. 2
nanofibers	10.9 w% for N				
Nitrogen and sulfur co-	4.96 w% for N	248	500	100	Ref. 3
doped carbon nanosheets	3.01 w% for S				
N/S codoped ordered	20.32 at% for N	220	3 000	5 000	Ref. 4
mesoporous carbon	0.82 at% for S				
pTTPN@600	7.52 w% for N	74	2 000	10 000	Ref. 5
	1.63 w% for S				
Sulfurized polyacrylonitrile	${\sim}8$ w% for N	126.5	10 000	10 000	Ref. 6
derived carbon	3.39 w% for S				
Sulfur-doped disordered	26.91 w% for S	271	1 000	1 000	Ref. 7
carbon					
Covalent sulfur-carbon	40.1 w% for S	590	200	100	Ref. 8
complex					
Sulfur-doped carbon spheres	25.5 w% for S	238.2	600	1 000	Ref. 9
N-doped porous carbon	2.14 at% for N	198.6	500	200	Ref. 10
Nitrogen-doped 3D porous	15.02 w% for N	175	3 000	500	Ref. 11
carbon monolith					
Ultrathin carbon nanocups		212	1 000	1500	Ref. 12
FeS@Fe ₃ C@GC		575.7	100	100	Ref. 13
TiO2-Sn@carbon nanofibers		413	400	100	Ref. 14
Mo ₂ C embedded in S-doped		102.7	500	5 000	Ref. 15
carbon					

Table S2 Various Carbon-based anodes for sodium ion batteries

References

J. Q. Yang, X. L. Zhou, D. H. Wu, X. D. Zhao, Z. Zhou, Adv. Mater., 2017, 29, 1604108.
 Y. Bao, Y. P. Yang, X, Song, J. Long, S. Q. Wang, L.-X. Ding, H. H. Wang, Electrochim.

Acta, 2018, 276, 304–310.

[3] X. Miao, D. F. Sun, X. Z. Zhou, Z. Q. Lei, Chem. Eng. J., 2019, 364, 208–216.

[4] J. Q. Ye, H. Q. Zhao, W. Song, N. Wang, M. M. Kang, Z. Li, J. Power Sources, 2019, 412,

606–614.

[5] W. L. Shao, F. Y. Hu, C. Song, J. Y. Wang, C. Liu, Z. H. Weng, X. G. Jian, J. Mater. Chem. A, 2019, DOI: 10.1039/C8TA11921J.

[6] J. Qian, F. Wu, Y. S. Ye, M. L. Zhang, Y. X. Huang, Y. Xing, W. Qu, L. Li, R. J. Chen, Adv. Energy Mater., 2018, 1703159.

[7] W. Li, M. Zhou, H. M. Li, K. L. Wang, S. J. Cheng, K. Jiang, Energy Environ. Sci., 2015, 8, 2916–2921.

[8] T. J. Wu, M. J. Jing, L. Yang, G. Q. Zou, H. S. Hou, Y. Zhang, Y. Zhang, X. Y. Cao, X. B. Ji, Adv. Energy Mater., 2019, 9, 1803478.

[9] H. M. Tang, D. Yan, T. Lu, L. K. Pan, Electrochim. Acta, 2017, 241, 63-72.

[10] C. J. Li, J. Y. Li, Y. C. Zhang, X. Cui, H. B. Lei, G. F. Li, J. Mater. Sci., 2019, 54, 5641–5657.

[11] J. Gong, G. Q. Zhao, J. K. Feng, G. L. Wang, Y. L. An, L. Zhang, B. Li, ACS Appl. Mater. Interfaces, 2019, 11, 9125–9135.

[12] X. Jian, H. Wang, G. F. Rao, L. Y. Jiang, H. N. Wang, C. Subramaniyam, A. Mahmood, W. L. Zhang, Y. Xiang, S. X. Dou, Z. W. Zhou, D. Hui, K. Kalantar-Zadeh, N. Mahmoodbg, Chem. Eng. J., 2019, 364, 578–588.

[13] Q. H. Wang, W. C. Zhang, C. Guo, Y. J. Liu, C. Wang, Z. P. Guo, Adv. Funct. Mater., 2017, 27, 1703390.

[14] M. L. Mao, F. L. Yan, C. Y. Cui, J. M. Ma, M. Zhang, T. H. Wang, C. S. Wang, Nano Lett., 2017, 17, 3830–3836.

[15] L. Li, Z. Chen, M. Zhang, Solid State Ionics, 2018, 323, 151-156.