Supporting Information for:

Pt-embedded monolayer g-C₃N₄ as a promising single-atom

electrocatalyst for ammonia synthesis

Hui Yin^a, Shu-Long Li^b, Li-Yong Gan^{a,*}, and Ping Wang^{a,*}

- School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, P.R. China.
- Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education), Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, P.R. China

Email: <u>*ganly@scut.edu.cn</u> (L.G.) <u>*mspwang@scut.edu.cn</u> (P.W.)

Free Energy Calculations

The free energies of intermediates were calculated by taking gas-phase N_2 and H_2 as reference states. The entropies and zero-point energy were calculated based on the vibrational frequencies. The entropy is calculated as

$$S(T) = \sum_{i=1}^{3N} \left[-Rln \left(1 - e^{-\frac{hv_i}{k_B T}} \right) + \frac{N_A hv_i e^{-\frac{hv_i}{k_B T}}}{T - \frac{hv_i}{k_B T}} \right],$$

in which R, h, k_B , N_A , v_i , N and T is the universal gas constant, Planck's constant, Boltzmann's constant, Avogadro's number, frequency of the normal mode, number of adsorbed atoms and temperature (298.15 K), respectively. Entropies of the gas-phase N₂ and H₂ were taken from the NIST database. The zero point energy is defined as

$$E_{ZPE} = \frac{1}{2} \sum_{i=1}^{N_{modes}} h v_i$$

where N_{modes} is the number of vibrational modes. Then, ΔE_{ZPE} and ΔS are the differences in zero point energy and entropy, respectively, between the adsorbed species and gas-phase molecules.

The operating bias U is the applied potential required to eliminate the energy barrier of the potential-limiting step and is calculated as $-\Delta G_{pls}/e$, where ΔG_{pls} is the free energy difference of the potential-limiting step. More details can be found in Ref. 17.

Table S1. Adsorption energies (E_ad) of N_2, N_2H, NH_2 and H on Pt/g-C_3N_4 in 2 \times 2 and 3 \times 3

Size	E_{ad} of N_2 (eV)	E_{ad} of N_2H (eV)	E_{ad} of $NH_2(eV)$	E _{ad} of H (eV)
2×2	-1.42	-2.89	-3.21	-1.06
3 × 3	-1.51	-2.95	-3.26	-1.04

supercells.

Figure S1. The adsorption configurations of N atom on $TM/g-C_3N_4$ (TM = Re, Mo, V, Fe, Ti, Ru, Cr, Ir, Mn, Co, Rh, Pt, Sc, Ni, Pd and Cu).

Figure S2. The adsorption configurations of N_2H on $TM/g-C_3N_4$ (TM = Re, Mo, V, Fe, Ti, Ru, Cr, Ir, Mn, Co, Rh, Pt, Sc, Ni, Pd and Cu).

Figure S3. The adsorption configurations of NH_2 atom on $TM/g-C_3N_4$ (TM = Re, Mo, V, Fe, Ti, Ru, Cr, Ir, Mn, Co, Rh, Pt, Sc, Ni, Pd and Cu).

Figure S4. Calculated free energy ($\Delta G = \max[{}^{\Delta G_{(* NH_2 \rightarrow NH_3)}}, {}^{\Delta G_{(N_2 \rightarrow * N_2 H)}}]$) for the reduction adsorption of *N₂H and reduction desorption of *NH₂ on TM/g-C₃N₄.