Supplementary information: New insights on the nature of impurity levels in V-doped In₂S₃: Why is it impossible to

obtain a metallic intermediate band?

Elaheh Ghorbani, *,† Paul Erhart, \ddagger and Karsten Albe†

†Fachgebiet Materialmodellierung, Institut für Materialwissenschaft, TU Darmstadt, Otto-Berndt-Straße 3, D-64287 Darmstadt, Germany

Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

E-mail: ghorbani@mm.tu-darmstadt.de

Figure S1: Spin-polarized local densities of states of In_2S_3 :V calculated with PBE (top panel) and HSE functionals (bottom panel). Four V atoms are added into four well-separated In^{8c} sites, creating isoelectronic V_{In}^0 centers.

Figure S2: Spin-polarized densities of states of $In_2S_3:V$, when the incorporated V forms an acceptor (V_{In}^- ; top panel) or a double-donor center (V_{In}^{2+} ; bottom panel).

Figure S3: THe HSE calculated spin-polarized total density of states of $In_{31}S_{48}$: V_1^{16h} (top pannel) and $In_{28}S_{48}:V_4^{16h}$ (bottom panel), when the incorporated V is on +II oxidation state. The zero of energy is set to the energy of the VBM obtained for each compound. For 1.25 at.% and 5 at.% vanadium, width of IB is 0.53 and 0.61 eV, respectively.

states at.%.	of	V	on	In ^{16h}	sites a	as	calculated	with	HSE	function	nal.	The V	concentration	is	1.25
				=	Char	rge	state	a	b	С	<i>d</i> ($V^{16h}-S)$	=		

Table S1: Lattice parameters a, b, c and average (V-S) bond length (in Å) for various charge

Charge state	a	b	С	$d(V^{16h}-S)$
$q{=}{+}2$	7.59	7.62	32.43	2.43
$q{=}{+}1$	7.64	7.63	32.49	2.44
$q{=}0$	7.67	7.66	32.75	2.50
q=-1	7.71	7.71	32.83	2.55