Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Figures and Tables

Figure S1 The AFM image of MoS₂ single layer.

Figure S2 The FTIR spectra of MoS₂, [BMIM][BF₄] and MoS₂-SILM. Detail data are shown in Table S1.

Figure S3 The separation performance (selectivity vs. permeability) of MoS_2 -SILM under EEF compared with other membranes. (a) CO_2/H_2 , (b) CO_2/CH_4 and (c) CO_2/N_2 . The detail data is shown in Table S2 and from the Supplementary references.

Figure S4 The mixed gas selectivity of MoS_2 -SILM under EEF.

Figure S5 Molecular simulated CO₂ permeance under EEF.

Figure S6 The density map of $[BMIM]^+$ inside the nanochannel under EEF of (i) E=-0.03 V/nm, (ii) E=0 V/nm, (iii) E=0.03 V/nm. Blue indicates the region that low probability to find $[BMIM]^+$, while red region indicates the high probability of finding $[BMIM]^+$.

Figure S7 The durability of MoS_2 -SILM. (a) is the permeance of CO_2 and H_2 tested under 3.75 V/mm for a week; (b) is the gas selectivity of MoS_2 -SILM and MoS_2 under 12.5 V/mm and - 12.5 V/mm after 1 day.

Figure S8 Cross-section SEM image of MoS_2 -SILM after testing under 12.5 and -12.5 V/mm.

Fig. S9 A bichamber system for simulations of CO_2 permeance through the MoS₂-SILM. White, cyan, and red balls denote helium, carbon, and oxygen, respectively. Green-cyan and magenta stick represent [BMIM]⁺ and [BF₄]⁻ ions.

[BMIM][BF ₄] (cm ⁻¹)	MoS ₂ -SILM (cm ⁻¹)	Shifts (cm ⁻¹)	Assignment	
3160.81	3158.88	-1.93	νС4-Н, νС5-Н	
3122.24	3118.38	-3.86	νС2-Н	
2939.03	2937.10	-1.93	vCH ₂	
2877.32	2875.39	-1.93	vCH ₂	
1708.65	1764.57	55.92		
1621.86	1614.15	-7.71		
1465.66	1463.73	-1.93	vCH ₃	
1384.66	1386.59	1.93	wCH ₂	
1373.09	1363.45	-9.64	vC2N1C5, wCH ₂	
1338.38	1340.31	1.93	vN-Bu, N-Me	
1284.38	1288.24	3.86	νBF_4	
1253.52			tCH ₂ , rC2-H	
	1218.81		νBF_4	
1168.67	1157.10	-11.57	vN-Bu, N-Me	
1031.74	1035.60	3.86	vBF	
1014.39	1010.53	-3.86	νBF_4	
908.32	919.89	11.57		
846.61	827.32	-19.29	rC4-H, rC5-H	
808.04	813.82	5.78	vC-C-C	
696.19	705.83	9.64	vN-Bu, N-Me	

Table S1 The data of FTIR peaks in Fig. S2.

Number	Membrane	P _{CO2}	P _{CO2}	CO ₂ /H ₂	CO ₂ /CH ₄	CO ₂ /N ₂	Ref
		(Barrer)	(GPU)				
1	ZIF-90/6FDADAM	720	12		28		1
2	PSF	-	19.86		23.12		2
3	DDR	17.9	35.8		98		3
4	MIL-53-NH2/organosilica	45.6	430		23.2		4
5	MMP-3/mPSf	150	3000			78	5
6	PAMAM dendrimer	18.3	61			230	6
7	DNMDAm–DGBAmE– TMC/PDMS/PS	-	1601			138	7
8	PVAm-PIP/PS	195000	6500			277	8
9	DAmBS–DGBAmE– TMC/PDMS/PS	4781	5831			86	9
10	SIPN:PEGMEA:PEGDA:PE GDME	2980	11.9-14.9	14.7		45.7	10
10	SIPN:PEGDA:PEGDME	1767	7.1-8.8	14.5		65.9	10
11	Matrimid® ZIF-8	12.96	180		41.5		11
12	6FDA-DAT/Ni2(dodbc)	63.9	0.91-1.6		52		12
13	6FDA-ODA UiO-66	100	1.26-2.52		46.1		13
14	Pebax/[emim][BF4]/GO	-	981			44	14
15	Pebax/GO	100	20	13	26	91	15
16	Pebax/[emim][BF4]	269	306		15	36	16
17	PAN/[emim][Ac]GO/PTMSP	0.56	37	16	39	130	17
18	GO	0.76	110	6	10	20	18
19	0.1water-[BMIM][BF ₄]-PES	1518	13.8			60	19
20	[BMIM][BF ₄]/AgO	89.7	14.1		-	28.2	20
21	[BMIM][BF ₄]/CuO	214.84	52.4		-	21	21
22	Pebax/0.5%Ag/50%[BMIM][BF ₄]	180	3.2		61	187.5	22
23	[BMIM][BF ₄]/LiBF ₄	-	13.36		8.25	8.4	23
24	[BMIM][BF ₄]/cyanuric chloride	-	19.2		10.7	11	24
25	Pebax®/PEG	151	2.52	10.8	15.5	47	25
26	IL-Pebax 165/ZIF-8	261	20	10	36	71	26
27	PEO-PBT/PEG-DBE (PAN- PDMS)	750	15	12.4	11.2	40	27
28	MoS2-[BMIM][BF ₄] (1940 nm)	92.9	47.88	14.95	43.52	131.42	28
29	MoS2-[BMIM][BF ₄] (1120 nm) under positive EEF	243	195	34	174	462	This work

 Table S2 The data of gas separation performance of different membranes in Figure 3.

 CO_2 MoS₂ С S 0 Mo ε (Kcal/mol) 0.0559 0.1600 0.0135 0.4612 (Å) 2.5650 4.2000 3.1300 σ 2.7570 (e) 0.6512 -0.3256 0.7600 -0.3800q

Table S3 Lennard-Jones parameters and atom charge of MoS₂ used in this work.^{30, 31}

References

- 1 T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones and S. Nair, *Angew. Chem. Int. Ed.*, 2010, **49**, 9863-9866.
- 2 A. K. Zulhairun and A. F. Ismail, J. Membr. Sci., 2014, 468, 20-30.
- 3 S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima and S. Yoshida, *Ind. Eng. Chem. Res.*, 2007, **46**, 6989-6997.
- 4 C. Kong, H. Du, L. Chen and B. Chen, *Energy Environ. Sci.*, 2017, 10, 1812-1819.
- 5 Z. Qiao, S. Zhao, M. Sheng, J. Wang, S. Wang, Z. Wang, C. Zhong and M. D. Guiver, *Nat. Mater.*, 2019, 18, 163-168.
- 6 S. Duan, T. Kouketsu, S. Kazama and K. Yamada, J. Membr. Sci., 2006, 283, 2-6.
- 7 S. Li, Z. Wang, X. Yu, J. Wang and S. Wang, Adv. Mater., 2012, 24, 3196-3200.
- 8 Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang and S. Wang, *AlChE J.*, 2013, **59**, 215-228.
- 9 M. Wang, Z. Wang, S. Li, C. Zhang, J. Wang and S. Wang, *Energy Environ. Sci.*, 2013, 6, 539-551.
- 10 X. Jiang, S. Li and L. Shao, Energy Environ. Sci., 2017, 10, 1339-1344.
- 11 Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb and E. Sivaniah, *Energy Environ. Sci.*, 2012, 5, 8359-8369.
- 12 J. E. Bachman and J. R. Long, Energy Environ. Sci., 2016, 9, 2031-2036.
- 13 O. G. Nik, X. Y. Chen and S. Kaliaguine, J. Membr. Sci., 2012, 413, 48-61.
- 14 W. Fam, J. Mansouri, H. Li, J. Hou and V. Chen, *ACS Appl. Mater. Interfaces*, 2018, **10**, 7389-7400.
- 15 J. Shen, G. Liu, K. Huang, W. Jin, K. R. Lee and N. Xu, *Angew. Chem. Int. Ed.*, 2015, **54**, 578-582.
- 16 W. Fam, J. Mansouri, H. Li and V. Chen, J. Membr. Sci., 2017, 537, 54-68.
- 17 M. Karunakaran, L. F. Villalobos, M. Kumar, R. Shevate, F. H. Akhtar and K. V. Peinemann, *J. Mater. Chem. A*, 2017, **5**, 649-656.
- 18 H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik and S. Kwon, *Science*, 2013, **342**, 91-95.
- 19 W. Zhao, G. He, L. Zhang, J. Ju, H. Dou, F. Nie, C. Li and H. Liu, *J. Membr. Sci.*, 2010, **350**, 279-285.
- 20 D. Ji, Y. S. Kang and S. W. Kang, Sci. Rep., 2015, 5, 16362.
- 21 Y. S. Park, C. Ha and S. W. Kang, RSC Adv., 2017, 7, 33568-33571.

- 22 E. Ghasemi Estahbanati, M. Omidkhah and A. Ebadi Amooghin, ACS Appl. Mater. Interfaces, 2017, 9, 10094-10105.
- 23 Y. Choi, G. H. Hong and S. W. Kang, J. Nanosci. Nanotechno., 2016, 16, 2832-2835.
- 24 G. H. Hong, D. Ji and S. W. Kang, RSC Adv., 2014, 4, 16917.
- 25 A. Car, C. Stropnik, W. Yave and K.-V. Peinemann, J. Membr. Sci., 2008, 307, 88-95.
- 26 A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi and A. Kargari, J. Membr. Sci., 2017, **524**, 652-662.
- 27 W. Yave, A. Car, S. S. Funari, S. P. Nunes and K.-V. Peinemann, *Macromolecules*, 2010, 43, 326-333.
- 28 D. Chen, W. Ying, Y. Guo, Y. Ying and X. Peng, ACS Appl. Mater. Interfaces, 2017, 9, 44251-44257.
- 29 L. M. Robeson, J. Membr. Sci., 2008, 320, 390-400.
- 30 D. Chen, W. Wang, W. Ying, Y. Guo, D. Meng, Y. Yan, R. Yan and X. Peng, *J. Mater. Chem. A*, 2018, **6**, 16566-16573.
- 31 T. Liang, S. R. Phillpot and S. B. Sinnott, Phys. Rev. B, 2009, 79.