Supporting Information

The doping of phosphorus atoms into graphitic carbon nitride with highly enhanced photocatalytic hydrogen evolution

Xiao-Xiang Fang,^a Liu-Bo Ma,^a Kuang Liang,^a Sheng-Jie Zhao,^a Yi-Fan Jiang,^a Cong Ling,^a

Tan Zhao,^a Tuck-Yun Cheang,^{*b} and An-Wu Xu^{*a}

^aDivision of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry Physics, University of Science and Technology of China, Hefei 230026, China. E-mail: anwuxu@ustc.edu.cn ^bDepartment of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.

Precursors of	Sources of P	SA1 ^[a]	SA2 ^[b]	HER ^[c]	Ref	
g-C ₃ N ₄	atoms	(m ² g ⁻¹)	(m² g-1)	(µmol h⁻¹ g⁻¹)		
Dicyandiamide	(NH ₄) ₂ HPO ₄	11	17	N/A ^[d]	S1	
Dicyandiamide	BmimPF ₆ ^[e]	21	31	N/A	S2	
Dicyandiamide	(NH ₄) ₂ HPO ₄	11	11	N/A	\$3	
Melamine	H ₃ PO ₄	9	28	570.00	S4	
Melamine	4-DPPBA ^[f]	15	24	757.80	counterpart	
Urea	4-DPPBA	90	135	2610.80	this work	

Table S1. Physicochemical properties of $g-C_3N_4$ and phosphorus doped $g-C_3N_4$ synthesized from different precursors.

[a] the BET surface area of pure g-C₃N₄; [b] the BET surface area of P doped g-C₃N₄; [c] H_2 evolution rate of P doped g-C₃N₄; [d] not available; [e] 1-butyl-3-methylimidazolium hexafluorophosphate; [f] 4-(diphenylphosphino)benzoic acid.

Table S2. Nonmetal-doped g- C_3N_4 and their properties (Ratios of PL intensity and photocurrent were estimated from reported data). NA: not available.

Doping	Precursor	Ratio of PL	Ratio of	H ₂ Evolution	Reference
Element		intensity	photocurrent	Rate (µmol h⁻¹	
		(optimal/pure)	(optimal/pure)	g ⁻¹)	
Р	4-DPPBA (P)	0.17	3.00	2611	Our work
	Urea (g-C ₃ N ₄)				
В	Ph₄BNa (B)	0.67	1.20	440	S5
	Urea (g-C ₃ N ₄)				
В	BmimBF ₄ (B)	0.42	1.89	110	S6
	DCDA (g-C ₃ N ₄)				
Ν	$N_2H_4 \bullet H_2O(N)$	0.81	2.36	554	S7
	Melamine (g-C ₃ N ₄)				
0	H ₂ O ₂ (O)	0.07	4.00	1200	S8
	Melamine (g-C ₃ N ₄)				
0	H ₂ O ₂ (O)	0.16	NA	375	S9
	DCDA (g-C ₃ N ₄)				
F	NH₄F (F)	NA	NA	130	S10

	DCDA (g-C ₃ N ₄)				
S	Thiourea (S)	0.53	2.78	122	S11
	CN ₂ H ₂ (g-C ₃ N ₄)				
S	Thiourea (S/ g-	0.33	NA	1375	S12
	C ₃ N ₄)				
Br	NH₄Br (Br)	0.67	2.5	960	S13
	Urea (g-C ₃ N ₄)				
I	NH4I (I)	0.14	3.00	760	S14
	DCDA (g-C ₃ N ₄)				
I	lodine (I)	0.05	2.44	890	S15
	Melamine (g-C ₃ N ₄)				

We have compared the ratios of PL intensity and photocurrent (optimal/pure) and H₂ evolution rate of our sample with other nonmetal doped g-C₃N₄ samples, as shown in Table S2, our PCN-5 sample reveals an obvious decrease of peak intensity compared with pristine g-C₃N₄, suggesting the restriction of electron-hole recombination. Besides, a higher and rapid photocurrent is generated after P doping, indicating more charge carriers are produced and their mobility is enhanced. So, we suggest the charge separation and transfer are enhanced by phosphorus doping, leading to the highest H₂ evolution rate as compared to other nonmetal doped g-C₃N₄ in Table S2.

Fig. S1 TG curve of 4-DPPBA molecules.

Fig. S2 Nitrogen adsorption-desorption isotherms of $g-C_3N_4$ (M), PCN (M), $g-C_3N_4$ and PCN-5.

Fig. S3 TEM images of (a, c) g-C₃N₄ and (b, d) PCN-5.

Fig. S4 (a) Band gaps and (b) Mott-Schottky plots of $g-C_3N_4$ and PCN-5 conducted at 1 Hz.

Fig. S5 Comparison of photocatalytic HER on PCN-5 photocatalyst in the presence of different sacrificial agents under visible light ($\lambda \ge 420$ nm). Reaction conditions: catalyst, 50 mg; 100 mL of solution containing sacrificial agents; light source, xenon lamp (300 W) with a cutoff filter; temperature, 10 °C.

Fig. S6 Effect of Pt loading amount on photocatalytic hydrogen evolution of PCN-5 under visible light irradiation ($\lambda \ge 420$ nm).

Fig. S7 Wavelength-dependent apparent quantum yield for the photocatalytic hydrogen evolution reaction over PCN-5.

Fig. S8 (a) XRD patterns and (b) FTIR spectra of PCN-5 before and after photocatalytic reaction.

Fig. S9 High-resolution XPS spectra of P 2p for obtained PCN-5 before and after photocatalytic experiment.

REFERENCES

(S1) S. Z. Hu, L. Ma, J. G. You, F. Y. Li, Z. P. Fan, F. Wang, D. Liu and J. Z. Gui, *RSC Adv.*, 2014, **4**, 21657-21663.

(S2) L. G. Zhang, X. F. Chen, J. Guan, Y. J. Jiang, T. G. Hou and X. D. Mu, *Mater. Res. Bull.*, 2013, **48**, 3485-3491.

(S3) S. Z. Hu, L. Ma, J. G. You, F. Y. Li, Z. P. Fan, G. Lu, D. Liu and J. Z. Gui, *Appl. Surf. Sci.*, 2014, **311**, 164-171.

(S4) S. E. Guo, Y. Q. Tang, Y. Xie, C. G. Tian, Q. M. Feng, W. Zhou and B. J. Jiang, *Appl. Catal. B*, 2017, **218**, 664-671.

(S5) H. Q. Li, Y. X. Liu, X. Gao, C. Fu and X. C. Wang, ChemSusChem, 2015, 8, 1189-1196.

(S6) F. Raziq, Y. Qu, X. L. Zhang, M. Humayun, J. Wu, A. Zada, H. T. Yu, X. J. Sun and L.
Q. Jiang, J. Phys. Chem. C, 2016, 120, 98-107.

(S7) J. W. Fang, H. Q. Fan, M. M. Li and C. B. Long, *J. Mater. Chem. A*, 2015, **3**, 13819-13826.

(S8) Z. F. Huang, J. J. Song, L. Pan, Z. M. Wang, X. Q. Zhang, J. J. Zou, W. B. Mi, X. W. Zhang and L. Wang, *Nano Energy*, 2015, **12**, 646-656.

(S9) J. H. Li, B. Shen, Z. H. Hong, B. Z. Lin, B. F. Gao and Y. L. Chen, *Chem. Commun.*, 2012, **48**, 12017-12019.

(S10) Y. Wang, Y. Di, M. Antonietti, H. R. Li, X. F. Chen and X. C. Wang, *Chem. Mater.,* 2012, **22**, 5119-5121.

(S11) L. Ge, C. C. Han, X. L. Xiao, L. L. Guo and Y. J. Li, *Mater. Res. Bull.*, 2013, **48**, 3919-3925.

(S12) J. L. Chen, Z. H. Hong, Y. L. Chen, B. Z. Lin and B. F. Gao, *Mater. Lett.*, 2015, **145**, 129-132.

(S13) Z. A. Lan, G. G. Zhang and X. C. Wang, Appl. Catal. B, 2016, 192, 116-125.

(S14) G. G. Zhang, M. W. Zhang, X. X. Ye, X. Q. Qiu, S. Lin and X. C. Wang, *Adv. Mater.*, 2014, **26**, 805-809.

(S15) Q. Han, C. G. Hu, F. Zhao, Z. P. Zhang, N. Chen and L. T. Qu, *J. Mater. Chem. A*, 2015, **3**, 4612-4619.