Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Edge Dislocation Defects Generation in Co₃O₄ Catalyst: an Efficient

Tactic to Improve Oxygen Evolution Catalytic Activity

Xiumin Li¹, Xinyu Su¹, Ying Pei¹, Xuejing Zheng¹, Jie Liu¹, Keyong Tang¹*, Guoqing Guan², Xiaogang Hao³

1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, (P. R. China).

2. Energy Conversion Engineering Lab, Institute of Regional Innovation, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan).

3. Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, (P. R. China)

**Corresponding Author*

K. Tang, E-mail: <u>kytangzzu@hotmail.com</u>

Fig. S1 SEM images of cellulose I (native cotton linter pulp) (A), and cellulose II (regenerated cellulose) (B).

Fig. S2 Structure model from the obtained fcc of DA-Co₃O₄

Fig. S3 Atomic reconstruction of Fig. 3G. Additional active edge sites are marked by red arrow.

Fig. S4 SEM images of DA-Co₃O₄ (A) ED-Co₃O₄ (B) and HT- Co₃O₄ (C).

Fig. S5 TEM images of ED-Co $_3O_4$ (A) and HT- Co $_3O_4$ (B).

Fig. S6 EDS spectra, elemental mapping and corresponding SEM image of DA- Co₃O₄

nanosheets.

Fig. S7 Nyquist plots of DA-Co₃O₄ (A) ED-Co₃O₄ (B) and HT- Co₃O₄ coated electrodes at a 400 mV overpotential.

The resistances of DA-Co₃O₄, ED-Co₃O₄ and HT- Co₃O₄ coated electrodes for OER process were analyzed by electrochemical impedance spectroscopy technique. As shown in Fig. S7, the resistance in the high frequency region is corresponding to the ohmic resistance R_s . Here, the charge transfer resistance (signed as R_{ct}) was calculated from the arc radius of the Nyquist plot. One can see that the ohmic resistance R_s of DA-Co₃O₄ electrocatalysts coated electrodes is slightly smaller than those of ED-Co₃O₄ and HT- Co₃O₄ electrodes. In addition, the DA-Co₃O₄ coated electrode also shows the lowest charge transfer resistance R_{ct} among these three Co₃O₄ catalysts. These results indicate that the interface of DA-Co₃O₄ electrode had good affinity with the charges and reactants, whose rich defects may promote OH⁻ diffusion and adsorption, and enhance charge/mass transfer.

Catalysts	Ele etre la te			
	Electrolyte	$\eta (mv)(a)$	$\eta (mv)(a)$	Kel.
		<u>10 IIIA CIII -</u> 192	<u>50 IIIA CIII -</u> 261	This month
DA-C0 ₃ O ₄	IM KOH	183	261	I his work
Noble metal-based				
IrO_2/C	0.1M KOH	470	N/A	1
IrO ₂	0.1M KOH	450	N/A	2
Ir/C	1M KOH	300	N/A	3
LDH-based				
NiFe LDH /CNT	1M KOH	~235	N/A	3
NiFe LDH	1M KOH	300;	N/A	4
NiCo LDH	1M KOH	330;	N/A	4
CoCo LDH	1M KOH	350	N/A	4
NiFe LDH	1M KOH	224	~300	5
NiFe LDH/RGO	1M KOH	245	~290	6
Ni _{2/3} Fe _{1/3} -GO	1M KOH	230	N/A	7
NiFe LDH /CQDs	1M KOH	~235	N/A	8
FeNi ₈ Co ₂ LDH	1M KOH	220	N/A	9
CoMn LDH	1M KOH	324	N/A	10
CoFe LDH	1M KOH	281	341	26
Fe _x Co _{1-x} OOH	1M KOH	266	N/A	27
Transition metal oxides				
Co ₃ O ₄	1M KOH	~270	~330	11
CoNiO _x	1M KOH	336	~360	22
CoFe ₂ O ₄ /C	1M KOH	240	~290	25
NiCo ₂ O ₄	1M KOH	340	N/A	12
Na _{1-x} Ni _y Fe _{1-y} O ₂	1M KOH	290		23
$Co_3V_2O_8$	0.1M KOH	350	N/A	13
CoMoO ₄	1M KOH	312	~390	14
CuO	1 M NaOH	290	~420	20
CuCo ₂ O ₄ /NrGO	1M KOH	360	~420	15
Other catalysts				
Ni ₂ P	1M KOH	310	N/A	16
NiFeP	1 M NaOH	219	~340	21
Co ₄ N/CC	1M KOH	257	~270	17
CoP	1M KOH	360	N/A	18
CoS/Ti	1M KOH	361	~400	19
$CoS_{4.6}O_{0.6}$	1M KOH	290	N/A	24

Table S1. Comparison of electrocatalytic OER activities of DA-Co₃O₄ coatedelectrodes with various state-of-the-art OER catalysts.

References

1. T. Y. Ma, J. L. Cao, M. Jaroniec, S. Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution, Angew. Chem. Int. Ed., 55 (2016) 1138-1142.

2. Y. Zhu, W. Zhou, Z. G. Chen, Y. Chen, C. Su, M. O. Tadé, Z. Shao, $SrNb_{0.1}Co_{0.7}Fe_{0.2}O_{3-\delta}$ Perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution, Angew. Chem. Int. Ed., 54 (2015) 3897–3901.

3. M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation, J. Am. Chem. Soc., 135 (2013) 8452-8455.

4. F. Song. X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis, Nat. Commun., 5 (2014) Article number: 4477

5. Z. Li, M. Shao, H. An, Z. Wang, S. Xu, M. Wei, D. Evansa, X. Duan, Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions, Chem. Sci., 6 (2015) 6624-6631.

6. D. H. Youn, Y. B. Park, J. Y. Kim, G. Magesh, Y. J. Jang, J. S. Lee, One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation, J. Power Sources, 294 (2015) 437-443.

7. W. Ma, R. Ma, C. X. Wang, J. B. Liang, X. H. Liu, K. H. Zhou, T. Sasak, A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water, ACS Nano, 9 (2015) 1977–1984.

8. D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang, Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation, ACS Appl. Mater. Interfaces, 6 (2014) 7918–7925.

9. X. Long, S. Xiao, Z. Wang, X. Zheng, S. Yang, Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction, Chem. Commun., 51 (2015) 1120-1123.

10. F. Song, X. Hu, Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst, J. Am. Chem. Soc., 136 (2014) 16481–16484.

11. R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng, D. Yuan, The urchin-like sphere arrays Co₃O₄ as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction, J. Power Sources, 341 (2017) 250–256.

12. X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, C. Li, Hollow mesoporous NiCo₂O₄ nanocages as efficient electrocatalysts for oxygen evolution reaction, Dalton Trans., 44 (2015) 4148-4154.

13. S. Hyun, V. Ahilan, H. Kim, S. Shanmugam, The influence of $Co_3V_2O_8$ morphology on the oxygen evolution reaction activity and stability, Electrochem. Commun., 63 (2016) 44–47.

14. M. Yu, L. Jiang, H. Yang, Ultrathin nanosheets constructed CoMoO₄ porous flowers with high activity for electrocatalytic oxygen evolution, Chem. Commun., 51 (2015) 14361-14364.

15. S. K. Bikkarolla, P. Papakonstantinou, CuCo₂O₄ nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst, J. Power Sources, 281 (2015) 243-251.

16. A. Han, H. Chen, Z. Sun, J. Xua, P. Du, High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors, Chem. Commun., 51 (2015) 11626-11629.

17. P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Metallic Co₄N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction, Angew. Chem., 127 (2015) 14923–14927.

18. J. Ryu, N. Jung, J. Jang, H. Kim, S. Yoo, In situ transformation of hydrogenevolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units, ACS Catal., 5 (2015) 4066–4074. 19. T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He, A. Asiri, Electrodeposition of cobaltsulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction, Electrochem. Commun., 60 (2015) 92–96.

20. T. Huan, G. Rousse, S. Zanna, I. T. Lucas, X. Xu, N. Menguy, V. Mougel, M. Fontecave. A dendritic nanostructured copper oxide electrocatalyst for the oxygen evolution reaction, Angew. Chem., 129 (2017) 4870-4874.

21. F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater., 29 (2017) 1606570.

22. X. Deng, S. Öztürk, C. Weidenthaler, H. Tüysüz, Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction, ACS Appl. Mater. Interfaces, 9 (2017) 21225–21233.

23. B. Weng, F. Xu, C. Wang, W. Meng, C. R. Grice, Y. Yan, A layered $Na_{1-x}Ni_yFe_{1-y}O_2$ double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energ. Environ. Sci., 10 (2017) 121-128.

24. P. Cai, J. Huang, J. Chen, Z. Wen, Oxygen - containing amorphous cobalt sulfide porous nanocubes as high - activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew. Chem., 129. (2017) 4936-4939.

25. X. Lu, L. Gu, J. Wang, J. Wu, P. Liao, G. Li, Bimetal - Organic framework derived CoFe₂O₄/C porous hybrid nanorod arrays as high - performance electrocatalysts for oxygen evolution reaction. Adv. Mater., 29 (2017) 1604437.

26. Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In situ exfoliated, N - doped, and edge - rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction, Adv. Funct. Mater., 28 (2018) 1703363.

27. S. Ye, Z. Shi, J. Feng, Y. Tong, G. Li, Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem. Int. Ed., 57 (2018) 2672-2676.