Supporting Information

A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage

Noel Díez, Guillermo A. Ferrero, Marta Sevilla, Antonio B. Fuertes*

Instituto Nacional del Carbón (CSIC), Fco. Pintado Fe 26, Oviedo 33011, Spain

*Corresponding author: abefu@incar.csic.es

Table S1. Che	emical composition	of the hierarchically	porous carbons.
---------------	--------------------	-----------------------	-----------------

Sample code	Elemental composition (wt.%)					(O/C) _{at} a
	С	Н	Ν	S	0	()
CK-750	90.9	0.2	0.1	0.0	8.9	0.07
CK-800	93.2	0.2	0.1	0.0	6.5	0.05
CK-850	93.8	0.1	0.2	0.0	6.1	0.05
CK-900	93.5	0.1	0.3	0.0	6.2	0.05

^a O/C atomic ratio.

Table S2. Textural properties and yield of tannic acid-derived carbons produced by a variety of conditions.

Sample code	Activating agent/template	Textural properties			
	(wt. ratio)ª	S _{BET} (m ² g ⁻¹)	V _{Total} (cm ³ g ⁻¹)	V _{<2nm} (cm ³ g ⁻¹)	
ТК	-/KCI (0/6.7)	510	0.48	0.16	26.1
CK	K ₂ CO ₃ /- (1/0)	1770	0.86	0.64	35.2
BK	KHCO ₃ /KCI (1/6.7)	2180	0.91	0.82	36.3
OK	K ₂ C ₂ O ₄ /KCl (1/6.7)	1990	0.84	0.72	38.7
CK-N	K ₂ CO ₃ /NaCl (1/6.7)	1890	0.91	0.69	35.0
CK-C	K ₂ CO ₃ /Na ₂ CO ₃ (1/6.7)	1830	0.95	0.68	32.4
CK-F	K ₂ CO ₃ /KCI (1/6.7)	2340	0.98	0.86	36.1
CK-M	K ₂ CO ₃ /KCI (1/6.7)	2130	0.87	0.78	35.2

^a Weight ratio with respect to 1 part of tannic acid.

^b Yield calculated by dividing the weight of porous carbon by the weight of tannic acid in the mixture prior to pyrolysis.

Carbon precursor	Activating agent	Textural properties		Carbon violda (9/)	Deference
		S _{BET} (m ² g ⁻¹)	V _{Total} (cm ³ g ⁻¹)		Relefence
Tannic acid	K ₂ CO ₃	2740	1.39	32.1	[This work]
Lignin	K ₂ CO ₃	1950	0.93	39.0	[37]
Waste tea	K ₂ CO ₃	1722	0.95	15.9	[40]
Coconut shell	K ₂ CO ₃	1430	0.65	48.0	[41]
Chickpea husk	K ₂ CO ₃	1780	0.65	13.0	[42]
Palm shell	K ₂ CO ₃	1170	-	19.0	[43]
Rice husks	K ₂ CO ₃	1165	0.78	14.2	[44]
Tobacco stems	K ₂ CO ₃	2557	1.65	16.7	[45]
Tannin-F hydrogel	KOH	1800	0.65	21.0	[31]
Sugar cane pulp	KOH	2910	2.05	11.0	[7]
Lignite	KOH	2810	1.35	9.7	[6]
Gulfweed	KOH	2862	1.62	31.4	[5]
Glucose	KNO₃	1912	0.93	9.1	[46]
Glucosamine	$K_2C_2O_4$	2680	1.49	11	[47]
soya flour	$K_2C_2O_4$	2924	2.15	5.0	[47]
Sodium Glutamate	none	1010	0.56	33.0	[22]

Table S3. Textural properties and carbon yield of porous carbons obtained by using different biomass-based carbon precursors and activating agents.

^a Yield calculated by dividing the weight of porous carbon by the weight of biomass-based precursor.

Figure S1. EDX analysis of a carbonized product (a) before and (b) after washing.

Figure S2. SEM images of CK-750 (a), CK-800 (b), CK-850 (c) and CK-900 (d).

Figure S3. SEM images of sample TK prepared in the absence of K_2CO_3 (a and b) and CK carbon obtained in the absence of KCI (c and d).

Figure S4. XRD patterns of carbons prepared from tannic acid and KCI (TK), tannic acid and K_2CO_3 (CK) and the ternary mixture (CK-800) using the same carbonization temperature (800 °C).

Figure S5. SEM images of BK (a) and OK (b) carbons.

Figure S6. N₂ adsorption isotherms (a) and pore size distributions (b) of carbons prepared at 800 °C using K_2CO_3 , KHCO₃, $K_2C_2O_4$ and no activating agent. N₂ adsorption isotherms (c) and pore size distributions (d) of carbons prepared at 800 °C using K_2CO_3 , Na₂CO₃, Na₃CO₃, Na₂CO₃, Na₂

Figure S7. SEM images of CK-800 (a), CK-C (b) and CK-N (c) carbons.

Figure S8. SEM images of CK-F (a) and CK-M (b) carbons.

Figure S9. Chemical structure of tannic acid. Figure reproduced with permission.¹ Copyright, Elsevier, 2015.

Figure S10. Cyclic voltammograms at different scan rates of the porous carbons in (a) $1M H_2SO_4$, (b) $1 M TEABF_4$ and (c) EMImTFSI/AN.

Figure S11. Nyquist plots (above) and Bode plots (below) for the porous carbons in 1 M H_2SO_4 (a and d), 1 M TEABF₄ (b and e) and EMIMTFSI/AN (c and f).

Figure S12. Cycling stability of the electrodes in (a) 1 M H_2SO_4 , (b) 1 M TEABF₄ and (c) EMIMTFSI/AN.

1. Z. Xia, A. Singh, W. Kiratitanavit, R. Mosurkal, J. Kumar and R. Nagarajan, *Thermochim. Acta*, 2015, **605**, 77-85.