Supporting Information

Effect of trace hydrofluoric acid in LiPF₆ electrolyte on the performance of Li-organic battery with N-heterocycle based conjugated microporous polymer as cathode

Zhangxin Chen,^a Ning Xu,^a Weijun Li,^{a,*} Ruiyang Zhao,^b Yujie Dong,^a Junlei Liu,^a Chang Su,^c Jianli Wang^a and Cheng Zhang^{a,*}

^a State Key Laboratory Breeding Base for Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, P. R China.
^b College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
^c College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.

E-mail address: <u>liwj@zjut.edu.cn</u> (Weijun Li); <u>czhang@zjut.edu.cn</u> (Cheng Zhang).

1. Synthesis

Synthesis of 1,3,5-tris(4-diphenylamino-phenyl)benzene (TTPAB) monomer.

1,3,5-tris(4-diphenylamino-phenyl)benzene was prepared simply by Suzuki coupling reaction compared to the literature (**Scheme S1**). A mixture of 1,3,5-Tribromobenzene (0.35 g), [4-(diphenylamino)phenyl] boronic acid (1.32 g), Pd(PPh₃)₂Cl₂ (30 mg), NaOH (0.24 g) were dissolved in toluene (20 ml), and then heated at 110 °C for only 20 minutes under nitrogen atmosphere. After cooling to room temperature, the mixture was extracted with DCM and dried by anhydrous MgSO₄. The obtained TTPAB was isolated by column chromatography with a 58% yield as a white solid powder. 1H NMR (500MHz, CDCl₃), δ 7.71 (s, 3H), 7.58 (d, J = 8.6 Hz, 6H), 7.31-7.28 (m, 12H) (overlapped with the solvent peak of CDCl3), 7.17 (t, J = 7.6 Hz, 18H), 7.05(t, J = 6.8 Hz, 6H). MS (MADLI-TOF): calculated for C₆₀H₄₅N₃: m/z=807.36, found m/z=807.36.

Synthesis of the 1,3,5-Tris(4-Diphenylamino-Phenyl)Triazine (TDAPTz) Monomer

The 1,3,5-tris(4-diphenylamino-phenyl)triazine was simply prepared by Suzuki coupling in a short time (Scheme S1). A mixture of Cyanuric chloride (0.184 g), [4-(diphenylamino)phenyl] boronic acid (1.445 g), Pd(PPh₃)₂Cl₂ (36 mg), and NaOH (0.4 g) was dissolved in toluene (20 ml), and then heated at 110 °C for 1 h under nitrogen atmosphere. After cooling to room temperature, the mixture was extracted with DCM and dried by anhydrous Na₂SO₄. The obtained TDAPTz was isolated by column chromatography with a 60% yield as a yellow solid powder. Mass spectrometer (MS) (ESI): calculated for C₅₇H₄₂N₆ m/z: 810.35, found m/z: 811.3). 1H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 8.8 Hz, 1H), 7.35 (t, J = 7.9 Hz, 2H), 7.22 (d, J = 7.5 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 8.8 Hz, 1H)

Scheme S1 the synthesis route of TTPAB and TDAPTz monomer

Material	Еох	HOMOª	λmax	λ onset	Eg ^b	LUMO ^c
TPADTz	1.0 V	-5.12eV	/	/	/	/
PTPADTz	0.86V	-4.97eV	411nm	481nm	2.58 eV	-2.39 eV
PTPADTz- LiPF ₆	0.9 V	-5.01eV	515nm	652nm	1.90 eV	-3.11 eV

Table S1 electrochemical and Optical Parameters of the Samples: TPADTz, PTPADTz, PTPADTz-LiPF₆.

 $^{\rm a}$ Estimated from the onset oxidation potential by using HOMO = $-E_{ox}$ –4.8 eV + E_{ox} Fc/Fc+.

^b Calculated by using Eg = 1240/ λ onset (λ onset: the absorption edge of the maximum absorption).

^c LUMO = HOMO + Eg

Table S2. Some of the detailed physical parameters of LiPF₆ electrolyte supplied by the company in this work

ltoma	Technical	In this articla	Dodochem	JH
nems	standard	in this article		new energy
H ₂ O content (ppm)	≤ 20	8	~5	~8
HF content (ppm)	≤ 30	19	~20	~15
Conductivity	≥ 8.0	12.7	~10	~10

Figure S1 the ¹H NMR of the monomer TPADTz

Figure S2. The FT-IR of TPADTz monomer, and the corresponding chemical polymer, electrochemical film.

Figure S3 the length and width pore diameter of the micropore via the nonlocal density functional theory

calculations (NL-DFT)

Figure S4 the 2^{nd} charge/discharge curve of PTTPAB at 20 mA g⁻¹ between 1.5-4.2V

Figure S5 The electro-synthesis of PTPADTz by repeated CV scans from -1.2 to 1.6 V at a scan of 100 mV S⁻¹ and 0.1 M TBAP in DCM solution with a monomer concentration of 10⁻³ M L⁻¹

Figure S6. the energy level of TPADTz using the DFT calculation at the B3LYP/6-31 g level performed via Gaussian 09

Figure S7 the Raman of CP polymer and ECP film (polymer PTPADTz)

Figure S8 the UV-vis of PTPADTz film in LiPF₆ electrolyte and then in TEA solvent under the same film test

Figure S9 the UV-vis of PTPADTz film in LiClO₄, in HF/LiClO₄ (the ratio of HF is ~25ppm) electrolyte and then in

TEA solvent under the same film test

Figure 10 the UV-vis of PTPADTz film in HCl solution (~36%) and then in TEA solvent under the same film test

Figure S11 the UV-vis of the TTPAB; TTPAB film in LiPF₆ electrolyte; TTPAB film in HCl solution

Figure S12 the UV-vis and the color change of PTDAPTz in different electrolyte

Figure S13 the CV curve of PTPADTz film in LiClO₄, in HF/LiClO₄ electrolyte (the ratio of HF is ~15 ppm) and then in

TEA/HF/LiClO₄ (the ratio of TEA is ~20 ppm) under the same film test.

Figure S14 the CV curve of as-prepared PTPADTz film in the $LiClO_4$ and then added trace H_2SO_4 (~10 ppm) with a

scan rate of the 20 mV/s under the same film test

Figure S15 the schematic diagram of open lithium battery test

Figure S16 the charge/discharge process at a current of 20 mA of PTPADTz film in a) $LiClO_4$ electrolyte in the first 20 cycles. b) The additional HF (~15 ppm) added into the $LiClO_4$ electrolytes after 20 cycles under the same film

test.

Figure S17 the charge/discharge process at a current of 20 mA of PTPADTz film in a) LiPF₆ electrolyte, b) The

additional TEA (~15ppm) added into the LiPF₆ electrolytes c) The excess TEA added into the LiPF₆ electrolytes.

Figure S18 the relationship of color change and charge discharge curve of PTDAPTz-LiPF₆