Supporting Information

β -Functionalized Push-Pull *Opp*-Dibenzoporphyrins as Sensitizers for Dye-Sensitized Solar Cells: The Role of the Phenylethynyl Bridge

Yi Hu[‡], Whitney A. Webre[‡], Michael B. Thomas, Austen Moss, Sarah Hancock, Jacob Schaffner, Francis D'Souza* and Hong Wang*

‡ Equal Contributions

Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA

Email: <u>hong.wang@unt.edu</u>; <u>francis.dsouza@unt.edu</u>

Table of Contents

1. Experimental Section	\$3
1.1 Material and synthetic procedures	\$3
1.2 Instruments and measurements	S6
2. Supplementary Figures and Tables	S8
Fluorescence decay profile	S8
Cyclic voltammogram data	S9
Spectrocelectrochemistry data	S10
Geometry-optimized molecule structures and isodensity surface for selected molecular orbitals	S11
Photovoltaic performance of YH4 at different soaking time	S12
Photovoltaic performance of YH4 with different CDCA concentration	S12
Stability studies of YH6 and YH7 on TiO2 surface	S13
Stability Studies of YH6 and YH7 in solution	S13
3. NMR Characterization of Compounds	S14
4. IR Characterization of Compounds	S23
5. Steady-state fluorescence Characterization of Compounds	S26
4. Table of Atom Coordinates for Optimized Structures YH4 – YH7	S28
5. References	S47

1. Experimental Section

1.1 Material and synthetic procedures

All reagents were purchased from Aldrich and Fisher and used without further purifications. Solvents used were dried through a commercially available solvent purification system. Column chromatography was performed on silica gel ($43 - 63 \mu m$).

Dibromoporphyrin **1** was synthesized according previous published procedure. ¹

Procedure for the synthesis of monobenzoporphyrins 2: Dibromoporphyrin 1 (100 mg, 0.08 mmol) and N, Ndicyclohexylmethylamine (76 μ L, 0.18 mmol) were added to a Schlenk flask and dried under vacuum. The vacuum was released under an argon atmosphere to allow the addition of dry THF (10 mL). The mixture was then degassed by three freeze-pump-thaw cycles before the addition of bis(tri-tert-butylphosphine)palladium (8.4 mg, 0.016 mmol), tris(dibenzyldeneacetone)dipalladium (8.5 mg, 0.008 mmol) and the methyl 2,4-pentadienoate (cis/trans mixture, 15-fold excess). The Schlenk flask was then sealed and heated at 45 °C for 12 h. The mixture was passed through a short silica plug using THF as the eluent. The solvent was removed under vacuum, and the residue was recrystallized using CH₂Cl₂/MeOH to give the crude product. The Crude product (97 mg) and *p*-chloranil (48 mg) were dissolved in toluene (10 mL). The mixture was heated at reflux for 12 h. Then the mixture was diluted with EtOAc and washed with 10% NaOH (aq) and water. The organic layer was separated and the solvent was removed under vacuum. Product **2** was obtained after recrystallization using CH₂Cl₂/MeOH.

Monobenzoporphyrin 2

C₈₈H₁₀₄N₄O₄; purple crystalline solid; m.p. > 300 °C; yield: 82 mg (0.06 mmol, 78%); ¹H NMR (500 MHz, CDCl₃): δ 8.96 (d, J = 4.9 Hz, 2H), 8.91 (d, J = 4.9 Hz, 2H), 8.77 (s, 2H), 8.16 (d, J = 15.7 Hz, 2H), 8.08 (d, J = 1.8 Hz, 4H), 8.06 (d, J = 1.8 Hz, 4H), 8.04 (t, 2H), 7.79 (t, 2H), 7.31 (s, 2H), 6.10 (d, J = 15.6 Hz, 2H), 3.91 (s, 6H), 1.52 (s, 36H), 1.49 (s, 36H), -2.54 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 167.26, 150.58, 148.93, 141.78, 141.52, 141.15, 130.96, 129.70, 128.54, 128.04, 123.79, 122.60, 121.22, 120.21, 118.44, 51.81, 35.33, 35.20, 31.89, 31.79 ppm; UV/Vis (CHCl₃): λ_{max} = 446, 529, 602, 667 nm; HRMS (MALDI): m/z: calcd for C₈₈H₁₀₄N₄O₄: 1280.8058; found: 1280.8058; FTIR (ATR) v_{max}/cm^{-1} 3064 (sp²)

CH), 2955–2870 (sp 3 CH), 1723 (CO), 1634 and 1592 (aromatic CC).

Procedure for the synthesis of monobenzoporphyrins 3: Monobenzoporphyrin **2** (100 mg, 0.08 mmol) and Nbromosuccinimide (2.2 equiv.) were dissolved in dry dichloroethane. The mixture was heated at reflux for 12 h. The progress of the reaction was monitored by UV/Vis spectroscopy. Upon completion of the reaction, the mixture was washed with 10% NaOH (aq) and water. The organic layer was separated, and the solvent was removed under reduced pressure. The resulting residue was recrystallized using CH₂Cl₂/MeOH to afford pure compound **3**.

Dibromomonobenzoporphyrin 3

C₈₈H₁₀₂Br₂N₄O₄; purple crystalline solid; m.p. > 300 °C; yield: 99 mg (0.07 mmol, 88%); ¹H NMR (500 MHz, CDCl₃): δ 8.90 (d, J = 4.4 Hz, 2H), 8.84 (d, J = 4.3 Hz, 2H), 8.13 (d, J = 15.7 Hz, 2H), 8.03 (s, 6H), 7.95 (d, J = 1.6 Hz, 4H), 7.80 (s, 2H), 7.24 (s, 2H), 6.07 (d, J = 15.7 Hz, 2H), 3.90 (s, 6H), 1.51 (s, 36H), 1.48 (s, 36H), -2.72 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 167.17, 150.77, 150.46, 149.48, 146.33, 143.17, 141.33, 141.16, 140.61, 140.29, 138.77, 131.35, 129.97, 129.71, 128.48, 127.71, 125.79, 123.73, 122.77, 122.34, 121.73, 120.42, 118.74, 51.85, 35.34, 35.25, 31.86, 31.78 ppm; UV/Vis (CHCl₃): λ_{max} = 450, 534, 569, 606 nm; HRMS (MALDI): m/z: calcd for C₈₈H₁₀₂Br₂N₄O₄: 1436.6268; found: 1436.6265; FTIR (ATR) v_{max}/cm⁻¹ 3066 (sp² CH),

2952–2868 (sp³ CH), 1722 (CO), 1631 and 1592 (aromatic CC), 710 (CBr).

Procedure for the synthesis of dibenzoporphyrins 4: Dibromoporphyrin **3** (100mg, 0.07 mmol) and N, N-dicyclohexylmethylamine (32 μ L, 0.15 mmol) were added to a Schlenk flask and dried under vacuum. The vacuum was released under an argon atmosphere to allow the addition of dry THF (10 mL). The mixture was then degassed by three freeze-pump-thaw cycles before the addition of bis(tri-tert-butylphosphine)palladium (7.1 mg, 0.014 mmol), tris(dibenzyldeneacetone)dipalladium (7.2 mg, 0.007 mmol) and the 4-methoxy styrene (15-fold excess). The Schlenk flask was then sealed and heated at 45 °C for 12 h. Then the mixture was passed through a short silica plug using THF as the eluent. The solvent was removed under vacuum, and the residue was recrystallized using CH₂Cl₂/MeOH to give the crude product. The Crude product (90 mg) and *p*-chloranil (45 mg) were dissolved in toluene (10 mL). The mixture was heated at reflux for 12 h. Then the mixture was diluted with EtOAc and washed with 10% NaOH (aq) and water. The organic layer was separated and the solvent was removed under vacuum. The resulting residue was subjected to silica column chromatography (CH₂Cl₂/cyclohexane). The band containing desired product **4** was collected and recrystallized using CH₂Cl₂/MeOH.

Dibenzoporphyrin 4

 $\begin{array}{l} C_{106}H_{118}N_4O_6; \mbox{ purple crystalline solid; m.p. > 300 °C; \mbox{ yield: 53 mg (0.03 mmol, 49%); 1H NMR (500 MHz, CDCl_3): $$\delta$ 8.90 (d, J = 6.1 Hz, 2H), 8.88 (d, J = 4.6 Hz, 2H), 8.17 (d, J = 15.7 Hz, 2H), 8.07 (d, J = 1.7 Hz, 4H), 8.03 (d, J = 1.7 Hz, H), 8.01 (d, J = 1.7 Hz, 4H), 7.82 (s, 2H), 7.30 (s, 2H), 6.97 (d, J = 8.4 Hz, 6H), 6.74 (d, J = 8.6 Hz, 4H), 6.10 (d, J = 15.6 Hz, 2H), 3.90 (s, 6H), 3.83 (s, 6H), 1.49 (s, 36H), 1.37 (s, 36H), -2.56 (s, 2H) ppm. $^{13}C NMR (126 MHz, CDCl_3): $$$ 167.30, 158.25, 150.57, 150.26, 148.58, 142.93, 141.68, 141.64, 141.60, 141.16, 139.21, 138.56, 137.81, 134.91, 131.28, 130.73, 128.38, 127.78, 127.69, 127.60, 123.61, 122.59, 122.35, 120.04, 119.56, 119.33, 113.21, 55.48, 51.80, 35.33, 35.22, \\ \end{array}$

31.79, 31.73 ppm; UV/Vis (CHCl₃): λ_{max} = 460, 534, 573, 615, 672 nm; HRMS (MALDI): m/z: calcd for C₁₀₆H₁₁₈N₄O₆: 1542.9051; found: 1542.9052; FTIR (ATR) ν_{max} /cm⁻¹ 3067 (sp² CH), 2954–2866 (sp³ CH), 1724 and 1706 (CO), 1631, 1609 and 1594 (aromatic CC), 1244, 1220, 1173 (CO).

General procedure for the synthesis of dibenzoporphyrins 5 and **6**: Dibromoporphyrin **3** (100mg, 0.07 mmol) and K_2CO_3 (21 mg, 0.15 mmol) were added to a Schlenk flask and dried under vacuum. The vacuum was released under an argon atmosphere to allow the addition of dry THF (10 mL). The mixture was then degassed by three freeze-pump-thaw cycles before the addition of bis(tri-tert-butylphosphine)palladium (14 mg, 0.028 mmol) and the enyne (10-fold excess). The Schlenk flask was then sealed and heated at 45 °C for 48 h. Then the temperature was raised to reflux for 24 h. The progress of the reaction was monitored by UV/Vis spectroscopy and TLC. Upon completing of the reaction, solvent was removed under vacuum and the resulting residue was subjected to silica column chromatography (CH₂Cl₂/cyclohexane). The band containing desired product was collected and the product was recrystallized using CH₂Cl₂/MeOH.

Dibenzoporphyrin 5

C₁₀₈H₁₁₄N₄O₄; purple crystalline solid; m.p. > 300 °C; yield: 48 mg (0.031 mmol, 45%); ¹H NMR (500 MHz, CDCl₃): δ 8.99 (d, J = 4.9 Hz, 2H), 8.92 (d, J = 4.8 Hz, 2H), 8.17 (d, J = 15.6 Hz, 2H), 8.05 (dt, 12H), 7.61 – 7.56 (m, 4H), 7.44 – 7.36 (m, 6H), 7.30 (s, 2H), 6.84 (s, 2H), 6.11 (d, J = 15.6 Hz, 2H), 3.91 (s, 6H), 1.52 (s, 36H), 1.50 (s, 36H), -2.57 (s, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 167.26, 150.82, 150.65, 149.52, 149.08, 142.97, 141.51, 141.37, 141.16, 138.99, 138.93, 131.67, 130.92, 129.16, 128.53, 128.41, 128.27, 128.02, 127.95, 127.77, 124.04, 123.66, 122.67, 122.63, 122.30, 120.18, 119.90, 119.48, 92.78, 89.94, 51.82, 35.37, 35.35, 31.90, 31.80 ppm; UV/Vis (CHCl₃): λ_{max} = 463, 538, 579, 616, 673 nm; HRMS (MALDI): m/z: calcd for

C₁₀₈H₁₁₄N₄O₄: 1530.8840; found: 1530.8847; FTIR (ATR) *v*_{max}/cm⁻¹ 3067 (sp² CH), 2956–2870 (sp³ CH), 2352 (alkyne CC), 1722 (CO), 1631 and 1594 (aromatic CC).

Dibenzoporphyrin 6

C₁₁₂H₁₂₄N₆O₄; purple crystalline solid; m.p. > 300 °C; yield: 26 mg (0.016 mmol, 23%); ¹H NMR (500 MHz, CDCl₃): δ 8.96 (d, J = 4.9 Hz, 2H), 8.90 (d, J = 4.8 Hz, 2H), 8.16 (d, J = 15.7 Hz, 2H), 8.05 (d, J = 16.2 Hz, 12H), 7.49 (d, J = 8.5 Hz, 4H), 7.29 (s, 2H), 6.75 (d, J = 7.6 Hz, 6H), 6.10 (d, J = 15.6 Hz, 2H), 3.91 (s, 6H), 3.06 (s, 12H), 1.52 (s, 36H), 1.49 (s, 36H).. ¹³C NMR (126 MHz, CDCl₃): δ 167.29, 150.78, 150.59, 150.09, 148.79, 142.93, 141.59, 141.45, 140.58, 139.00, 138.78, 132.88, 130.78, 128.57, 128.42, 127.99, 127.77, 127.64, 123.61, 123.34, 122.61, 122.20, 120.08, 119.75, 119.35, 112.05, 111.28, 94.78, 94.08, 88.30, 51.80, 40.47, 35.37, 35.34, 31.93, 31.80 ppm; UV/Vis (CHCl₃): λ_{max} = 469, 539, 583, 617, 676 nm; HRMS (MALDI): m/z: calcd for C₁₁₂H₁₂₄N₆O₄: 1616.9684; found: 1616.9688; FTIR (ATR)

v_{max}/cm⁻¹ 3069 (sp² CH), 2954–2868 (sp³ CH), 2355 (alkyne CC), 1724 (CO), 1634 and 1592 (aromatic CC).

General procedure for the synthesis of porphyrin dye YH4 – YH7: dibenzoporphyrin (50 mg) and zinc acetate (10 equiv.) were dissolved in MeOH/CHCl₃ (v/v = 1/3). The mixture was heated at reflux for 12 h. the progress of the reaction was monitored with TLC. upon completion of the reaction, the solvent was removed and the resulting residue was recrystallized using CH₂Cl₂/MeOH to afford pure zinc intermediate. The zinc inserted intermediate was dissolved in THF (3 mL). A solution of 20% NaOH (aq) (1 mL) and MeOH was added. The mixture was heated at reflux for 12 h. the progress of the reaction was monitored by TLC. The mixture was washed with 10% citric acid solution the water and then extracted with ethyl acetate. The organic layer was separated and the solvent was removed under reduced pressure. Pure product YH4 – YH7 were obtained after recrystallization using CH₂Cl₂/MeOH.

Porphyrin Dye YH4

 $C_{86}H_{98}N_4O_4Zn$; purple crystalline solid; m.p. > 300 °C; yield: 43 mg (0.046 mmol, 94%); ¹H NMR (500 MHz, CDCl₃): δ 8.89 (d, J = 4.6 Hz, 2H), 8.82 (d, J = 1.4 Hz, 4H), 8.17 (d, J = 15.8 Hz, 2H), 8.06 - 7.97 (m, 10H), 7.73 (s, 2H), 7.47 (s, 2H), 6.09 (d, J = 15.6 Hz, 2H), 1.46 (d, J = 15.4 Hz, 72H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 168.86, 151.57, 150.18, 149.95, 149.12, 148.46, 147.52, 144.93, 142.76, 142.49, 142.14, 141.29, 134.84, 132.04, 131.46, 131.11, 130.38, 129.60, 128.38, 128.24, 124.02, 123.70, 122.21, 121.54, 120.69, 120.35, 119.58, 118.63, 35.21, 35.08, 31.80, 31.72 ppm; UV/Vis (THF): λ_{max} (log ϵ) = 455 (5.33), 574 (4.56) nm; HRMS (MALDI): m/z: calcd for C₈₆H₉₈N₄O₄Zn: 1314.6880; found: 1314.6873; FTIR (ATR) v_{max}/cm⁻¹ 3300-

2500 (OH) 3064 (sp² CH), 2956–2870 (sp³ CH), 1693 (CO), 1623 and 1592 (aromatic CC).

Porphyrin Dye YH5

C104H116N4O6Zn; purple crystalline solid; m.p. > 300 °C; yield: 43 mg, (0.027 mmol, 84%); ¹H NMR (500 MHz, CDCl₃): δ 8.86 (d, J = 4.6 Hz, 1H), 8.83 (d, J = 4.6 Hz, 1H), 8.17 (d, J = 15.8 Hz, 1H), 8.03 (d, J = 1.8 Hz, 2H), 8.01 - 7.96 (m, 3H), 7.77 (t, J = 1.8 Hz, 1H), 7.45 (s, 1H), 7.12 (s, 1H), 6.96 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 8.7 Hz, 2H), 6.09 (d, J = 15.6 Hz, 1H), 3.80 (s, 3H), 1.45 (s, 16H), 1.32 (s, 17H) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 168.91, 158.12, 150.42, 150.12, 149.77, 145.62, 143.97, 142.76, 142.69, 142.22, 140.86, 139.28, 137.43, 134.99, 131.27, 130.92, 130.07, 128.15, 127.70, 127.62, 123.81, 122.19, 121.91, 120.18, 120.07, 113.15, 55.42, 35.20, 35.08, 31.71, 31.63.ppm; UV/Vis (THF): λ_{max} (log ϵ) = 470 (5.51), 562 (4.16), 594 (4.61), 638 (4.28) nm; HRMS (MALDI): m/z: calcd for C104H116N4O6Zn: 1576.7873; found: 1576.7864; FTIR (ATR) v_{max}/cm⁻¹ 3300–2500 (OH) 3069 (sp² CH), 2961–2833 (sp³ CH), 1696

(CO), 1623 and 1592 (aromatic CC), 1246 and 1224 (CO).

Porphyrin Dye YH6

C₁₀₆H₁₁₈N₄O₄Zn; purple crystalline solid; m.p. > 300 °C; yield: 36 mg (0.023 mmol, 70%); ¹H NMR (500 MHz, CDCl₃): δ 8.90 (d, J = 4.6 Hz, 1=2H), 8.84 (d, J = 4.6 Hz, 2H), 8.14 (d, J = 15.7 Hz, 2H), 8.00 (d, J = 1.8 Hz, 4H), 7.98 – 7.95 (m, 8H), 7.54 (m, 5H), 7.42 (s, 2H), 7.38 – 7.31 (m, 5H), 6.92 (s, 2H), 6.07 (d, J = 15.6 Hz, 2H), 1.44 (d, J = 9.9 Hz, 72H) ppm ¹³C NMR (126 MHz, CDCl₃): δ 168.86, 150.27, 150.22, 150.13, 144.57, 144.34, 142.57, 142.48, 142.04, 140.91, 139.14, 131.50, 131.17, 131.05, 130.20, 129.20, 128.41, 128.10, 127.79, 123.92, 123.78, 122.20, 121.72, 120.37, 120.34, 120.06, 92.36, 89.93, 35.18, 35.15, 31.73, 31.64; UV/Vis (THF): λ_{max} (log ε) = 475 (5.66), 596 (4.65), 616 (4.39), 638 (4.13) nm; HRMS (MALDI): m/z: calcd for C₁₀₆H₁₁₈N₄O₄Zn: 1564.7662; found: 1564.7655; FTIR (ATR) v_{max}/cm⁻¹ 3300–2500 (OH)

3058 (sp² CH), 2956–2868 (sp³ CH), 2356 (alkyne CC), 1696 (CO), 1623 and 1590 (aromatic CC).

Porphyrin Dye YH7

 $\begin{array}{l} C_{110}H_{118}N_6O_4Zn; \mbox{ purple crystalline solid; m.p. > 300 °C; \mbox{ yield: 47 mg (0.028 mmol, 91%); $^1H NMR (500 MHz, CDCl_3): $^{\circ} 8.96 (d, J = 4.9 Hz, 1H), 8.91 (d, J = 4.9 Hz, 1H), 8.77 (s, 1H), 8.16 (d, J = 15.7 Hz, 1H), 8.08 (d, J = 1.8 Hz, 2H), 8.06 (d, J = 1.8 Hz, 2H), 8.04 (t, 1H), 7.79 (t, 1H), 7.31 (s, 1H), 6.10 (d, J = 15.6 Hz, 1H), 3.91 (s, 3H), 1.52 (s, 16H), 1.49 (s, 16H), -2.54 (s, 1H) ppm. $^{13}C NMR (126 MHz, CDCl_3): $^{\circ} 168.86, 150.27, 150.22, 150.13, 144.57, 144.34, 142.57, 142.48, 142.04, 140.91, 139.14, 131.50, 131.17, 131.05, 130.20, 129.20, 128.41, 128.10, 127.79, 123.92, 123.78, 122.20, 121.72, 120.37, 120.34, 120.06, 92.36, 89.93, 35.18, 35.15, 31.73, 31.64 pm; UV/Vis (THF): $^{max} (log ε) = 458 (4.91), 480 (5.32), 598 (4.42), 618 (4.15), 641 (3.87) nm; HRMS (MALDI): m/z: calcd for $C_{110}H_{118}N_6O_4Zn$: 1650.8506; found: 1650.8504; FTIR (ATR) $$_{max}/cm^{-1} 3300-2500 (OH) 3062 (sp^2 CH), 2959-2870 (sp^3) $$_{max} (space space spa$

CH), 2205 (alkyne CC), 1698 (CO), 1623, 1610, 1594 and 1522 (aromatic CC).

1.2 Instruments and measurements

1.2.1 Spectra measurement

The UV/Vis spectra were recorded with an Agilent Carry 5000 UV/Vis/NIR spectrometer with samples in *o*-DCB or THF. The steady state fluorescence spectra were measured using a Horiba Jobin Yvon Nanolog UV-visible-NIR spectrofluorimeter equipped with a PMT (for UV-visible) and InGaAs (for NIR) detectors. All NMR spectra were recorded on a 500 MHz (¹H NMR)/126 MHz (¹³C NMR) spectrometer. All samples were prepared in CDCl₃ or CDCl₃ and MeOD. CDCl₃ was used as internal standard for ¹H NMR and ¹³C NMR (δ = 7.26 and 77.0 ppm, respectively). IR spectra were obtained using PerkinElmer Spectrum Two FT-IR Spectrometer using solid compounds. Mass spectra were obtained with a Thermoscientific MALDI-LTQ-XL-Orbitrap mass spectrometer. Differential pulse and cyclic voltammograms were recorded on an EG&G 263A potentiostat/galvanostat using a three-electrode system. A platinum button electrode was used as the vorking electrode, while a platinum wire served as the counter electrode and an Ag/AgCl electrode was used as the reference electrode. Ferrocene/ferrocenium redox couple was used as an internal standard. All the solutions were purged prior to electrochemical and spectral measurements with nitrogen gas.

Fluorescence lifetimes were measured using time correlated single photon counting (TCSPC) technique using nanoLED excitation sources. The emission was collected at emission peak maxima of a given compound.

1.2.2 Photovoltaic Measurement

Photovoltaic measurements were performed using the Grätzel-type two-electrode system using FTO (~10-12 microns, tec7 grade from Pilkington) glass coated with thin film TiO₂ as the working electrode and Pt-ized FTO as the counter electrode. The thin film TiO₂ was prepared via the "Doctor blade" technique as reported earlier. A mediator solution containing 0.6 M PMII ionic liquid, 0.1 M LiI, 0.05 M I₂, and 0.5 M 4-t-butylpyridine in acetonitrile was injected between the electrodes.

The photocurrent-photovoltage characteristics of the solar cells were measured with a Keithley 2400 source meter and solar simulator (SolarLight, Inc.). IPCE spectra were measured against a calibrated silicon photodiode using monochromatic light from a Xenon lamp (PV Measurements QEX7).

1.2.3 Spectroelectrochemical Measurement

Spectroelectrochemical study was performed by using a cell assembly (SEC-C) supplied by ALS Co., Ltd. (Tokyo, Japan). This assembly comprised of a Pt counter electrode, a 6 mm Pt Gauze working electrode, and an Ag/AgCl reference electrode in a 1.0 mm path length quartz cell. The optical transmission was limited to 6 mm covering the Pt Gauze working electrode.

1.2.4 Electrochemical Impedance Measurement

Electrochemical impedance measurements were performed using EG&G PARSTAT 4000A potentiostat/galvanostat. Impedance data were recorded under forward bias condition from 100 kHz to 10 mHz with an AC amplitude of 10 mV. Data were recorded under dark and A.M 1.5 illumination conditions applying corresponding open circuit potential (*Voc*). The data were analyzed using ZSimpwin software from Princeton Applied Research. Solution resistance (Rs), charge transfer resistance (Rct), and capacitance due to constant phase element (Q) were deduced from the fitted data. CPE was considered as capacitance component of the double layer electrode interface due to roughness of the electrode.

1.2.5 Femtosecond Transient Absorption Spectral Measurement

Femtosecond transient absorption spectroscopy experiments were performed using an Ultrafast Femtosecond Laser Source (Libra) by Coherent incorporating diode-pumped, mode locked Ti: Sapphire laser (Vitesse) and diode-pumped intra cavity doubled Nd: YLF laser (Evolution) to generate a compressed laser output of 1.45 W. For optical detection, a Helios transient absorption spectrometer coupled with femtosecond harmonics generator both provided by Ultrafast Systems LLC was used. The source for the pump and probe pulses were derived from the fundamental output of Libra (Compressed output 1.45 W, pulse width 100 fs) at a repetition rate of 1 kHz. 95% of the fundamental output of the laser was introduced into a TOPAS-Prime-OPA System with 290-2600 nm Tuning Range from Altos Photonics Inc., (Bozeman, MT), while the rest of the output was used for generation of white light continuum. Kinetic traces at appropriate wavelengths were assembled from the time-resolved spectral data. All measurements were conducted at 298 K.

1.2.6 Preparation of Electrodes for Photoelectrochemical and Transient Studies

Electrodes were prepared by cleaning FTO by sonicating individually in ethanol solutions of 0.1 M HCl, acetone, and isopropanol. Next, the FTO was allowed to soak in 20 mM solution of TiCl₄ at 70 °C for 30 minutes. Then, a layer of 20 nm anatase TiO₂ (18 NRT, Dyesol) was applied on the surface of the FTO using the doctor blade technique and allowed to dry in air for 15 minutes. The FTO/TiO₂ was then annealed in a heat cycle of 130 °C, 230 °C, 330 °C, 395 °C, 430 °C, and 515 °C for 10 minutes each. After cooling, a second layer of 20 nm opaque anatase TiO₂ was applied and annealed in a similar fashion. Next, the electrodes were allowed to soak in a fresh TiCl₄ solution for an additional 30 minutes at 70 °C before immersing in 0.2mM-0.3 mM sensitizer solution (CHCl₃/MeOH, v: v, 1:1-1:3) for 3 hours. The counter electrodes were made using chloroplatinic acid and Ethanol. They were then annealed at 500 °C for 30 minutes and then cooled to room temperature.

2. Supplementary Figures and Tables

Figure S1 Fluorescence decay profile of YH4 – YH7 in o-DCB

Table S1 Fluorescence lifetimes of YH4 – YH7 in *o*-DCB.

Compound	Average Lifetime (ns)	Chi ²
YH4	2.14	1.21
YH5	1.01	1.02
YH6	1.12	1.00
YH7	1.06	1.03

Table S2 Cyclic voltammograms of investigated compounds in o-DCB containing 0.1 M (n-Bu4N)ClO4. Scan rate = 10	0
mV/s. The potentials were measured with respect to the Ag/AgCl reference electrode.	

Dye	E _{ox} (V vs. Ag/Ag ⁺)		Ered (V vs. Ag/Ag ⁺)		
	1 st Oxidation	2 nd Oxidation	1 st Reduction	2 nd Reduction	3 rd Reduction
YH4	0.83	1.09	-1.34	-1.70	
YH5	0.74	0.97	-1.27	-1.63	
YH6	0.79	0.98	-1.25	-1.59	-1.80
YH7	0.78	0.96	-1.28	-1.62	-1.84

Figure S2 Cyclic voltammograms of compounds **YH4** – **YH7**. Ferrocene/ferrocenium redox couple was used as an internal standard

Figure S3 Spectroelectrocchemical studies of YH4 – YH7 in o-DCB containing 0.2 M (TBA)ClO₄

Computational Information

All calculations were carried out using Gaussian 09 program. The calculations were performed by density functional theory (DFT) with B3LYP level employing a basis sets 6-31G(d,p) for all atoms.²

Figure S4 Geometry-optimized molecule structures of **YH4** – **YH7** (Top); Isodensity surface of LUMO+1, LUMO, HOMO, HOMO-1 for **YH4** – **YH7** calculated by Gaussian09 DFT B3LYP/6-31G(d,p). Hydrogen atoms were omitted for clarity

Soaking time (h)	J _{sc} (mA/cm²)	V _{oc} (V)	FF (%)	η (%)
3	13.05	0.56	68	4.9
4	10.55	0.58	64	3.9
6	9.30	0.56	64	3.3
8	8.17	0.57	64	3.0
9	6.31	0.53	53	1.8
The photovoltaic me	asurements were cond	ducted under AM 1.50	illumination (power	100 mW cm ⁻²) in the
presence of a mask and with a cell active area of 0.16 cm^2 and a TiO_2 thickness of 25 $\mu m.$ The TiO_2 film was				
soaked in 0.3 mM dye solution in MeOH/CHCl ₃ (v/v = 3/1) containing 0.6 mM 3α , 7α -dihydroxy-5 β -cholic acid				
(CDCA) at different soaking time.				

Table S3 Photovoltaic performance of YH4 with different soaking time

Table S4 Photovoltaic performance of YH4 with different CDCA concentration

CDCA concentration (mM)	J _{sc} (mA/cm ²)	V _{oc} (V)	FF (%)	η (%)
0.0	4.83	0.56	58	1.6
0.2	5.01	0.54	59	1.6
0.4	7.65	0.60	64	3.0
0.6	8.07	0.61	63	3.1
0.8	6.86	0.60	66	2.7
1.0	5.88	0.58	59	2.0
The photovoltaic measurements were conducted under AM 1.5G illumination (power 100 mW cm ⁻²) in the				
presence of a mask and with a cell active area of 0.16 cm^2 and a TiO_2 thickness of 25 $\mu m.$ The TiO_2 film was				
soaked in 0.3 mM dye solution in MeOH/CHCl ₃ (v/v = 4/1) containing different concentration of 3α , 7α -				
dihydroxy-5β-cholic acid (CDCA) for 3 h.				

Figure S5 Stability studies of **YH6** and **YH7** on TiO_2 surface under ambient conditions. TiO_2 films were soaked in a 0.05 mM MeOH/CHCl₃ (v/v = 2/1) dye solution for 10 min

Figure S6 Stability studies of 0.002 mM **YH6** and **YH7** in MeOH/CHCl₃ (v/v = 3/1) solution under AM 1.5G illumination

3. NMR Characterization of Compounds

S16

4. IR Characterization of Compounds

All FT-IR spectra were obtained using solid compounds.

1594.3

76-74-72-

cm-1

5. Steady-State Fluorescence Spectra in THF

The sample was excited at 443 nm.

The sample was excited at 446 nm.

The sample was excited at 455 nm.

The sample was excited at 459 nm.

The sample was excited at 464 nm.

The sample was excited at 455 nm.

The sample was excited at 471 nm.

The sample was excited at 475 nm.

The sample was excited at 481 nm.

6. Table of Atom Coordinates for Optimized (in Vacuo) Structures YH4 – YH7

Atom coordinates for optimized structure YH4

	х	Y	Z
N	-3.25262	-0.01812	-0.03257
N	-1.20291	2.00522	0.00942
N	-1.18981	-2.02/51	-0.00604
N	0.91957	-0.00487	0.05309
	-4.07702	1.0/9/3	-0.10842
	-3.65436	2.42054	-0.06448
	-2.3136/	2.82893	0.0153
	-4.0090		-0.11110
C	-2 20150	-2.43934	-0.07399
C	-2.29439	-2.83923	-0.00238
C	1 26339	-2 44918	0.06844
C	1 72568	-1 12307	0.00044
C	-0 1072	2 8303	0.11219
C	1 24613	2 44179	0 12102
C	1 71627	1 11977	0 05252
C	-1.89609	4.20398	0.14059
C	-0.53805	4.20606	0.20179
C	3.11809	0.70982	-0.01996
C	3.12516	-0.69991	-0.02864
С	-0.50733	-4.22637	0.14068
С	-5.44438	-0.7057	-0.25884
C	-5.44882	0.65563	-0.2575
С	-4.70977	3.48479	-0.10016
С	-4.68689	-3.53012	-0.11566
С	2.26733	-3.56642	0.11441
С	2.23898	3.56304	0.25088
С	-5.57904	3.65328	0.9855
С	-6.57047	4.64183	0.97435
С	-6.66643	5.45368	-0.16463
С	-5.8187	5.31551	-1.2728
С	-4.83728	4.31813	-1.21911
С	-5.55166	-3.71388	0.97104
С	-6.53739	-4.70808	0.95354
С	-6.63229	-5.50969	-0.19277
С	-5.78891	-5.35611	-1.30225
С	-4.81322	-4.3535	-1.24209
С	2.66187	4.28019	-0.87468
С	3.60588	5.31071	-0.76341
С	4.08903	5.61159	0.51881
С	3.67263	4.93106	1.67233
С	2.74026	3.89813	1.51384
С	2.65937	-4.20714	-1.06652
С	3.62909	-5.21831	-1.0532
С	4.1859	-5.5674	0.18608
С	2.82319	-3.96425	1.33598
С	3.79882	-4.968	1.3942

С			
Ć			
C			
Ċ			
С			
С			
С			
С			
0			
\cap			
С С			
C			
0			
0			
Ζ	r	ſ	
С			
С			
Ĉ			
с С			
Ċ			
С			
С			
С			
С			
С			
C			
č			
C			
Ċ			
С			
С			
С			
С			
С			
C			
č			
C C			
C			
С			
С			
С			
С			
С			
C			
č			
C T			
H -			
Η			
Η			
Η			
Η			
Н			

4.32824	1.40768	-0.13532
5.55071	0.73657	-0.24847
4.34871	-1.38152	-0.08979
5.56657	-0.6946	-0.14863
-1.86614	-4.23295	0.09855
6.67872	1.60692	-0.59427
7,77624	1,33886	-1.32687
8 71061	2 44072	-1 66487
9 78686	2 08937	-2 42428
8 57637	3 59464	-1 31873
6 74474	_1 55110	0 01618
7 0.74474	-1.26940	0.01010
0 02617	2 25472	0.30772
10 105047	-2.55472	1 2/257
10.10304	-1.99191	1.34337
8.///19	-3.5041	0.39202
-1.18928	-0.01124	0.00648
4.10259	-5.93401	-2.33367
5.61338	-5.6/14/	-2.53981
3.86114	-7.45593	-2.19482
3.35425	-5.44468	-3.58795
4.46278	-5.40977	2.71305
4.2405	-6.92642	2.92273
5.98062	-5.11641	2.64424
3.88421	-4.67048	3.93426
-7.49724	-4.94647	2.13608
-7.30769	-6.38612	2.66988
-8.95825	-4.76487	1.66061
-7.24886	-3.96811	3.29975
-5.9632	-6.27468	-2.52813
-4.94692	-5.96345	-3.64281
-5.76969	-7.74873	-2.09995
-7.38523	-6.09309	-3.10987
4.10813	6.11495	-1.97873
5.65425	6.08525	-2.03251
3.57206	5.55369	-3.30947
3.63131	7.5813	-1.84404
4.25149	5.32492	3.04522
3.64715	4.49594	4.19444
5.7821	5.09898	3.03944
3.95494	6.81753	3.32466
-7.53514	4.86385	2.15623
-7.28564	3.8752	3.31087
-8.99384	4.68	1.67456
-7.35399	6.29902	2.70481
-5.99483	6.24467	-2.49043
-4.9731	5.9507	-3.60484
-5.81212	7.71577	-2.04758
-7 41386	6.05948	-3.07838
-2 56225	5,05189	0.18644
0 11027	5 0565	0 30201
0.15661	-5 0733/	0.21201
-6 28778	_1 37100	-0 36338
-6 20651	1 3150	-0 36094
-0.29001 5 /5005	1.JIJY	-0.30004
-3.43995	3.0016	1.0423/

Н	-7.43086	6.22384	-0.18922
Н	-4.15834	4.16667	-2.04936
Н	-5.43372	-3.06967	1.83373
Н	-7.39249	-6.28389	-0.22216
Н	-4.13796	-4.18982	-2.07304
Н	2.25706	4.00342	-1.84085
Н	4.81731	6.40902	0.62206
Н	2.3926	3.33115	2.36906
Н	2.20634	-3.88834	-1.99763
Н	4.95031	-6.33741	0.21179
Н	2.49693	-3.45828	2.23682
H	4.3376	2.48537	-0.19722
H	4.38265	-2.45936	-0.0543
H	-2.52591	-5.08607	0.14004
H	6.55851	2.65178	-0.31013
Н	7.98199	0.33883	-1.69736
Н	9.75662	1.14461	-2.6314
Н	6.59593	-2.59739	-0.24902
Н	8.18669	-0.26603	0.90592
Н	10.08337	-1.05356	1.57886
Н	5.81111	-4.60162	-2.66329
Н	5.97042	-6.18676	-3.43857
Н	6.2106	-6.02366	-1.69428
Н	4.40403	-7.88063	-1.34564
Н	4.19765	-7.97704	-3.09796
Н	2.79714	-7.673	-2.0542
Н	3.51777	-4.37781	-3.77121
Н	2.27568	-5.61773	-3.51347
Н	3.71586	-5.98769	-4.46694
Н	3.1727	-7.16263	2.97917
H	4.71044	-7.25264	3.85712
H	4.67215	-7.51943	2.11145
H 	6.46584	-5.63509	1.81317
H 	6.4/159	-5.43/43	3.569/4
H 	6.16899	-4.04604	2.514/6
H	2.81044	-4.85116	4.05059
H	4.04505	-3.58948	3.8/134
H	4.3/903	-5.02281	4.84489
H	-6.28149	-6.54224	3.01801
H	-/.51/13	-7.13636	1.90188 2 E1122
H	-7.90423	-0.373Z	3.3113Z
H	-9.21/31	-3.46214	1 20600
H	-9.12495	-3./4920	1.20000
	-9.05204	-4.9393	2.40999
	7 05/00	-4.0007	J. 11056
	-7.95400	-4.1/42/	4.110J0 2.00517
п 11	-1.392U/	-2.9203	2.9901/ 1 0167
п ц	-5.USL00	-4.3399	-4.U10/
n u	-J.LU044 _3 01/00	-0.04073	-4.40/02
n u	-3.9140Z	-0.0990	-3.30397
и ц	-4./009 -5 20557	-8 /1500	-2 96076
и П	-6 /Q2/1	-8 05155	-1 33769
11	U.4JJ41 _7 5/000	-5 05770	-3 10501
11	1. J4932	J.UJ/19	5.42594

Н	-8.16017	-6.34622	-2.38034
Н	-7.52541	-6.74111	-3.98236
Н	6.04003	5.06359	-2.10104
Н	6.10739	6.54627	-1.15056
Н	6.00942	6.63934	-2.90832
Н	3.87766	4.51372	-3.46373
Н	3.96919	6.14198	-4.14269
Н	2.47975	5.60236	-3.36547
Н	4.00921	8.04593	-0.92835
Н	2.53789	7.63944	-1.82202
Н	3.98619	8.17712	-2.69247
Н	2.56195	4.62422	4.26273
Н	4.07849	4.81956	5.14708
Н	3.85885	3.42751	4.08399
Н	6.02079	4.04604	2.85697
Н	6.21255	5.38173	4.00673
Н	6.28041	5.69167	2.26701
Н	2.8766	7.00688	3.33905
Н	4.39947	7.47195	2.56937
Н	4.36391	7.10976	4.29822
Н	-6.27724	3.97666	3.72475
Н	-7.4227	2.8358	2.99539
Н	-7.9953	4.06974	4.12139
Н	-9.15449	3.66746	1.29009
Н	-9.254	5.38409	0.87883
Н	-9.69172	4.84268	2.50356
Н	-6.3294	6.4566	3.057
Н	-8.03343	6.4743	3.54647
Н	-7.56527	7.05597	1.9439
Н	-5.07027	4.93017	-3.98891
Н	-3.94295	6.09022	-3.26151
Н	-5.13643	6.63509	-4.44347
Н	-4.81152	7.87881	-1.63401
Н	-6.5399	8.00662	-1.28444
Н	-5.93984	8.38943	-2.90234
Н	-7.57025	5.02614	-3.40459
Н	-7.55544	6.71466	-3.94527
Н	-8.19271	6.3008	-2.34902

Atom coordinates for optimized structure YH5

N N N N

C C C

C C C

Х	Y	Z
1.66245	-0.01031	0.30365 0.37994
-0.4421	0.01286	0.36412
2.45552	-1.13184	0.22319
1.98794	-2.44113	0.41337
2.46883	1.10252	0.23384
2.01455	2.41669	0.42965
0.66166	2.80138	0.52485
-1.54832	2.81/34	0.42136
-3.34799	1.13398	0.02749
-1.57885	-2.80317	0.46028
-2.91751	-2.42018	0.28254
-3.36052	-1.1022	0.06525
-1.1657	-4.16215	0.70828
-4.72171	-0.68716	-0.25546
-4.71445	0.72383	-0.28211
-1.12544	4.1709	0.68032
3.84001	-0.7266	-0.02956
2.97708	-3.56152	0.57201
3.02057	3.51868	0.5943
-3.8916 -3.94104	3.56/L -3.51564	0.23242
3.61121	-3.74885	1.80575
4.49358	-4.81659	2.01286
4.73357	-5.67864	0.93258
4.1275 3.2347	-5.51807 -4 44954	-0.322
3.7529	3.61339	1.78375
4.68658	4.63704	1.98205
4.85562	5.56978	0.94845
4.13962 3 21735	5.51281 4 4701	-0.25576 -0.41428
-4.16923	-4.37954	-0.70416
-5.15195	-5.37684	-0.63644
-5.8771	-5.49315	0.55874
-5.66245	-4.66152	1.5512
-4.04023	4.39661	-0.8855
-5.00592	5.41169	-0.91036
-5.81024	5.56999	0.2277
-4.090/ -5.67418	3.//348 4.77594	1.30915 1.37622
-5.89244	-1.38061	-0.59054
-7.06359	-0.70339	-0.94643
-5.89344	1.41343	-0.59854

S32

С	
С	
С	
С	
С	
С	
С	
С	
С	
0	
0	
С	
С	
С	
0	
0	
С	
С	
С	
С	
С	
С	
С	
С	
С	
С	
С	
С	
0	
С	
0	
С	
Z	n
С	
С	
Ċ	
Ċ	
С	
С	
Ċ	
Ć	
Ċ	
Ċ	
C	
С	
Ċ	
Ċ	
Ċ	
Ĉ	
Ċ	
Ĉ	
C	
Ć	
Ĉ	
-	

-7.08265 0.23277 5.01092 6.20032 6.21586 5.03662 -8.11385 -9.05999 -9.9213 -10.83952 -9.85863 -8.26207 -9.54306 -10.54549 -11.80818 -10.31624 7.38289 8.79978 7.73425 9.55129 9.21403 8.14348 7.45134 8.62412 9.75064 9.74544 7.4634 8.59331 10.58085 11.38079 10.90555 10.95312 -0.44507 -5.21481 -6.64928 -5.02012 -4.22192 -6.60063 -6.43998 -8.06872 -6.28291	0.73192 4.16078 -1.43041 -0.75284 0.6736 1.36935 -1.57422 -1.31986 -2.42905 -2.09498 -3.57479 1.59773 1.33557 2.42813 2.08758 3.56448 -1.57113 -3.52544 -2.71821 -3.21205 -2.08232 -1.27967 1.47898 1.25384 2.04452 3.08971 2.53032 3.33075 -4.06199 -3.78285 3.80481 4.87966 0.0007 6.33308 6.14398 7.80699 6.03245 5.01579 6.47253 4.07408	$\begin{array}{c} -0.88113\\ 0.75028\\ -0.33261\\ -0.62394\\ -0.58777\\ -0.30202\\ -1.48199\\ -2.40606\\ -2.88408\\ -3.83527\\ -2.49311\\ -0.96725\\ -0.64329\\ -0.69378\\ -0.30579\\ -1.04665\\ -1.01539\\ -0.6557\\ -0.27894\\ -1.79663\\ -2.55104\\ -2.55104\\ -2.55104\\ -2.55104\\ -2.5599\\ -0.81105\\ -0.06512\\ -0.23735\\ -1.73509\\ -1.73509\\ -1.92818\\ -2.085\\ -3.22295\\ -1.271\\ -2.19484\\ 0.30362\\ -2.12846\\ -2.6763\\ -1.6983\\ -3.26694\\ 2.58439\\ 3.07978\\ 2.15741\\ 3.76122\end{array}$
-5.21481 -6.64928 -5.02012 -4.22192	6.33308 6.14398 7.80699 6.03245	-2.12846 -2.6763 -1.69983 -3.26694
-6.60063 -6.43998 -8.06872 -6.28291	5.01579 6.47253 4.77634 4.07408	2.58439 3.07978 2.15741 3.76122
4.38018 3.54519 3.99576 5.8744	6.58222 6.32752 7.97299 6.58862	-1.33947 -2.60865 -0.78063 -1.74034
5.21533 7.02428 5.20794	4.76505 6.1217 4.69235 3.64347	3.27233 3.95119 2.92128 4.28145
5.16959 4.69809 4.82053 6.70692	-5.0856 -6.45858 -4.01363 -5.10681 -6.50968	3.37219 3.90831 4.42172 3.20291
1.1110J	0.00000	T.10000

С	3.75353	-6.12413	-2.78014
С	5.97127	-6.5439	-1.70822
С	3.96036	-7.92232	-1.05384
С	-5.45013	-6.33416	-1.8072
С	-6.95163	-6.26362	-2.1757
С	-4.63124	-5.98986	-3.06587
С	-5.0975	-7.77951	-1.38095
С	-6.50072	-4.85747	2.94587
С	-6.11184	-3.86453	4.05723
С	-7.99774	-4.64925	2.61532
С	-6.29038	-6.29114	3.48812
Н	0.84565	-5.01271	0.90387
Н	-1.83417	-5.00049	0.83035
Н	-1.78708	5.01595	0.79309
Н	3.39087	-3.05057	2.60423
Н	5.41424	-6.5121	1.07514
Н	2.73055	-4.28445	-1.42375
Н	3.58159	2.86631	2.54927
Н	5.57212	6.37315	1.08763
Н	2.63825	4.37727	-1.32514
Н	-3.58236	-4.24271	-1.60447
Н	-6.63893	-6.26276	0.62677
Н	-4.48527	-2.98773	2.37139
Н	-3.39981	4.22207	-1.74164
Н	-6.57289	6.34191	0.21974
Н	-4.55871	3.12304	2.21439
Н	-5.89503	-2.4601	-0.63888
Н	-5.91677	2.49331	-0.59957
Н	0.88948	4.99712	0.93175
Н	5.00401	-2.50856	-0.40241
H	5.07318	2.44875	-0.28144
H	-8.05368	-2.61413	-1.16302
H	-9.1938/	-0.32/59	-2.82689
H	-10.76697	-1.15542	-4.05512
H	-8.05697	2.63508	-1.22966
H	-9.83638	U.3448Z	-0.32721
H	-11.03007	1,13803	-0.03833
n H	9.07344	2 0746	-0.07744
n u	7.105	-2.9740	-3 11303
11 H	7 89393	-0 41194	-2 7569
н	8 64672	0.41194	0 66232
н	10 6509	1 87487	0.00232
Н	6 57521	2 72199	-2 33046
H	8.56129	4.12598	-2.66352
H	12.13714	-4.56825	-3.25965
 H	11.87727	-2.80753	-3.14033
 H	10.7923	-3.80655	-4.1492
Н	11.95148	5.31052	-2.10587
Н	10.20605	5.64918	-1.96107
Н	10.79997	4.53602	-3.22611
Н	-6.81005	5.11253	-3.00666
Н	-6.81889	6.80374	-3.53458
Н	-7.40992	6.37295	-1.92482

Н	-5.73014	8.10464	-0.92296
Н	-5.16755	8.47386	-2.55662
Н	-4.00989	7.97233	-1.31106
Н	-4.33337	5.01201	-3.64752
Н	-3.18281	6.16763	-2.94936
Н	-4.40326	6.71588	-4.1026
Н	-5.40885	6.66995	3.39111
Н	-7.09516	6.65547	3.93862
Н	-6.7003	7.19925	2.30496
Н	-8.37485	5.43548	1.34054
Н	-8.74379	4.9559	3.00172
Н	-8.21575	3.74579	1.81909
Н	-5.25835	4.20524	4.12481
Н	-6.41821	3.02202	3.49048
Н	-6.95919	4.28748	4.59513
Н	3.78361	5.36187	-3.06627
Н	3.75466	7.10553	-3.34979
Н	2.47042	6.35117	-2.40228
Н	2.93766	8.00363	-0.50069
H	4.16962	8.74942	-1.53428
H 	4.58242	8.23144	0.10587
H	6.18006	5.61046	-2.12525
H	6.52431	6.82/39	-0.89358
H	6.05579	/.3365/	-2.52053
H	4.15/62	6.19536	4.22453
H	5.45072	0.9000	3.29733
	J.01002	5 10002	4.00442
H U	7.32308	3.4900Z	2.24013
n u	7 63037	3.74330 A 77722	2.43430
н н	4 15932	3 65599	1 59595
и Ч	5 82213	3 7753	5 17799
н	5 43083	2 65348	3 87096
Н	3.61216	-6.4723	4 04694
Н	5.16689	-6.67242	4 87546
н	4.95745	-7.27215	3.22444
 H	3.74645	-3.98034	4.63025
Н	5.13854	-3.01521	4.10456
Н	5.33131	-4.24018	5.36318
Н	7.03036	-5.86693	2.48601
Н	7.19097	-5.32715	4.16093
Н	7.07777	-4.13701	2.85485
Н	4.06366	-5.13345	-3.12793
Н	2.6625	-6.12928	-2.68946
Н	4.02061	-6.84635	-3.55824
Н	6.35291	-5.5511	-1.96591
Н	6.20426	-7.22557	-2.53385
Н	6.52187	-6.89219	-0.82954
H	2.87858	-7.93206	-0.88449
Н	4.44527	-8.27036	-0.13687
Н	4.18645	-8.64484	-1.84612
Н	-7.2513	-5.2531	-2.47003
Н	-7.59431	-6.56517	-1.34393
Н	-7.1651	-6.9357	-3.01413

Н	-4.84302	-4.97713	-3.42384
Н	-4.88784	-6.68494	-3.87152
Н	-3.55365	-6.07392	-2.89104
Н	-5.67567	-8.09642	-0.50785
Н	-4.03549	-7.86747	-1.12849
Н	-5.31211	-8.47987	-2.19588
Н	-5.06445	-3.97623	4.35592
Н	-6.72859	-4.04425	4.94361
Н	-6.27119	-2.82576	3.75067
Н	-8.17733	-3.63793	2.2361
Н	-8.60904	-4.78838	3.51413
Н	-8.35223	-5.3558	1.85948
Н	-5.23811	-6.4663	3.73493
Н	-6.59469	-7.05152	2.76304
Н	-6.88261	-6.44408	4.39725

Atom coordinates for optimized structure YH6

Х	Y	Z
x 3.79922 3.80332 2.41844 1.61783 2.413 -1.1988 0.161 0.59338 -0.50815 -1.61852 1.94584 -4.77713 -3.4112 -2.61578 -3.40488 -2.96169 0.17027 -1.18769 -1.60675 -0.49922 0.6025 1.9556 -2.94741 2.94158 -3.97957 -3.95032 2.95674 3.68415 4.63143 4.8018 4.06753 3.13107 3.19139 4.13052 4.8177 4.60349 3.65817 -4.09845 -5.06073 -5.86315 -5.72895 -4.75357 -4.70452 -5.6748 -5.89885 -5.19283	Y 0.71337 -0.7014 -1.11231 0.00433 1.12351 4.16209 4.16615 2.8094 1.9883 2.80413 2.43743 -0.70441 0.70509 1.11245 -0.00557 -1.12242 2.42597 -4.16884 -4.17393 -2.81428 -1.99008 -2.8065 -2.42643 -2.42643 -2.44116 3.55748 3.52466 -3.55845 -3.53641 3.74058 4.7662 5.60811 5.46642 4.42597 -4.42596 -3.53641 3.74058 4.7662 5.60811 5.46642 4.42657 -4.42596 -5.45863 -5.57387 -4.70908 -3.68922 -4.36559 -5.38323 -5.56596 -4.79328 -3.7887 3.66914 4.66887 5.51319 5.40272	Z -0.02409 0.00005 0.23752 0.29574 0.20868 0.72399 0.73348 0.50104 0.38153 0.48143 0.37822 -0.26738 -0.22078 0.09541 0.17829 0.02761 0.31993 0.69816 0.62573 0.3923 0.35222 0.50119 0.4184 0.19666 0.46799 0.43421 0.18949 0.55978 1.64039 1.74493 0.636 -0.55022 -0.61314 -0.49579 -0.3766 0.84054 1.92387 1.76132 -0.94468 -0.98831 0.1474 1.31057 1.31278 1.62278 1.62278 1.76285 0.66558 -0.5415
-4.218 -5.95597	4.39958 -1.38581	-0.63293 -0.58589
-7.14625	-0.69836	-0.85225

\sim
C
C
С
Ν
С
\tilde{c}
C
С
С
N
11
С
С
C
C
С
N
\sim
C
С
С
\hat{c}
C
С
Ν
C
2
C
С
С
\tilde{a}
C
С
\sim
C
C
C
C C
C C C

С

С	
C	
С	
C	
<u> </u>	
С	
C	
-	
С	
С	
ĉ	
Ċ	
С	
C	
C	
С	
C	
~	
С	
С	
õ	
C	
С	
C	
C	
С	
C	
~	
С	
С	
č	
Ċ	
С	
$\overline{\mathbf{C}}$	
C	
С	
C	
<u> </u>	
С	
C	
~	
С	
С	
č	
Ċ	
С	
Ċ	
\sim	
С	
C	
~	
С	
С	
\tilde{c}	
C	
С	
C	
<u> </u>	
С	
C	
č	
C	
С	
\overline{C}	
C	
С	
C	
<u> </u>	
С	
С	
č	
Ċ	
С	
Ċ	
C	
С	

-7.12394 -5.94782 4.98725 6.17656 6.17399 4.97991 7.37477 8.4005 9.61473 10.85779 9.59728 10.78884 12.04374 12.01502 7.37078 8.38093 9.57061 9.6575 10.68222 11.84376 10.82362 11.9202	0.73705 1.40542 -1.40629 -0.71291 0.72059 1.41597 1.4432 2.07039 2.78259 2.12937 4.14928 4.83664 2.8258 4.17968 -1.44027 -2.07924 -2.81224 -4.18426 -2.17714 -2.89632 -4.25529	-0.89721 -0.53841 -0.24228 -0.49703 -0.51548 -0.28923 -0.75453 -0.94204 -1.15864 -1.03006 -1.50271 -1.71495 -1.24365 -1.58719 -0.75349 -0.98127 -1.25619 -0.94489 -1.84703 -2.11303 -1.2147 -1.79808
-5.10929	7.80892 6.33592	-1.26969
-6.49359	4.85729	3.05476
-6.26556	6.2838	3.60869
-7.99651	4.66251	2.74327
-6.0958	3.8501	4.15008
4.42772	-6.4477	-1.5207
5.92562	-6.36332	-1.89983
4.09752	-7.88628	-1.05676
3.59769	-6.14853	-2.78353
5.40699	-4.89818	3.22495
5.04263	-3.85055	4.29367
6.91784 5.12292	-4.76616	2.91715 3.80992
-5.26702	-6.28209	-2.22347
-4.27841	-5.95348	-3.35785
-5.06278	-7.76272	-1.82346
-6.70372	-6.09115	-2.76486
-6.65534	-5.05751	2.51358
-6.34264	-4.13481	3.70676
-8.12396	-4.81632	2.08916
-6.48948	-6.52208	2.98358
4.31566	6.4332	-1.72482
5.7912	6.32279	-2 17801
4.02757 3.41803	7.88372 6.12484	-1.27017
5.48706	4.98357	3.00805
5.22653	6.39983	3.5734
6.98384	4.84372	2.64086
5.16739	3.96017	4.11374

Zn	-0.49872	-0.00047	0.30014
С	-8.32569	-1.56484	-0.9502
С	-9.60795	-1.30661	-0.63025
С	-10.60016	-2.39533	-0.68652
0	-11.8373	-1.96	-0.32763
0	-10.38943	-3.55314	-1.00135
Н	-12.41761	-2.73667	-0.39093
С	-8.17532	1.62244	-1.40939
С	-9.13467	1.38533	-2.32363
C	-9.98174	2.50094	-2.78194
0	-10.89761	2.0879	-3.69738
0	-9.90742	3.66344	-2.4235
H	-11.39988	2.88223	-3.94398
н	-1 86368	5 00087	0 86113
Ч	0 8176	5 00932	0.88167
ц	0.82564	-5 00932	0.86212
11 U	_1 95170	-5 01922	0.72005
п 11	-1.0J1/9 2.51012	-J.01922	0.7200J 2.46255
п 11	5.51013	5.03037	2.40333
п 11	3.33043	0.40455	1 50000
п	2.34230	4.20009	-1.50829
H	2.63598	-4.28/28	-1.41537
H 	5.54826	-6.36918	0.94892
H 	3.45/55	-2.98855	2.562/5
H 	-3.45992	-4.1/1/5	-1./981
H	-6.62323	-6.34022	0.12588
H	-4.61674	-3.15467	2.18042
H	-4.49927	2.98036	2.43341
Н	-6.65306	6.28826	0.75305
Н	-3.64539	4.26652	-1.54295
H	-5.98176	-2.46536	-0.60387
H	-5.9484	2.48544	-0.5694
Н	5.01439	-2.48501	-0.25522
H	5.00296	2.49399	-0.3329
H	10.87524	1.07974	-0.75497
H	8.64295	4.65609	-1.60217
Н	10.76134	5.8892	-1.98153
Н	12.99463	2.31127	-1.13994
Н	12.94246	4.71951	-1.75348
Н	8.80345	-4.67615	-0.49079
Н	10.61564	-1.12343	-2.09785
Н	12.69234	-2.39562	-2.57003
Н	10.87784	-5.95121	-0.96924
Н	12.82823	-4.81293	-2.00721
Н	-4.97935	6.72681	-3.77375
Н	-4.95286	5.01582	-3.33551
Н	-3.63336	6.08847	-2.82806
Н	-5.32918	8.52029	-2.07369
H	-4.0402	7.87434	-1.0415
Н	-5.66072	8.1288	-0.38049
Н	-7.22562	7.01373	-2.86796
 H	-7.62757	6.65185	-1.18942
 H	-7 33788	5,33243	-2 32251
 H	-6 57391	7 0538	2 8955
н Н	-5 20805	6 11200	2.0900 2.0900
11	J.2000J	0.44090	J.UHJZJ

Н	-6.84453	6.4316	4.52716
Н	-8.35676	5.38044	2.00091
Н	-8.59386	4.79517	3.65234
Н	-8.18866	3.65707	2.35501
Н	-6.26695	2.81582	3.83499
Н	-6.69872	4.02483	5.0469
Н	-5.0435	3.9516	4.43495
Н	6.15106	-7.05628	-2.71812
Н	6.57423	-6.62406	-1.05806
Н	6.19195	-5.35315	-2.22691
H	4.31373	-8.60308	-1.85688
H 	3.03862	-7.98052	-0.79448
H 	4.68501	-8.17773	-0.18116
H	3.8445/	-6.8/343	-3.565/3
H	3.80645	-5.15025	-3.18121
H	Z.5ZZZ3	-6.22336	-2.59288
H	J.ZJZJJ E 62E70	-2.8315	3.95345 E 10702
H	2 00655	-4.02555	5.19702
n u	7 25755	-5.53079	2 212
н н	7.50474	-4 87889	2.212
н	7 14651	-3 78713	2 48413
Н	5,39819	-7.09841	3 11223
Н	4.06081	-6.41933	4.0487
н	5.69681	-6.45378	4.73097
H	-4.45751	-6.62133	-4.20649
Н	-3.23791	-6.0889	-3.04509
Н	-4.39664	-4.92644	-3.71796
Н	-5.20772	-8.4141	-2.69254
Н	-5.76968	-8.07921	-1.05115
Н	-4.05096	-7.92948	-1.43948
Н	-6.87061	-6.73501	-3.63568
Н	-6.87188	-5.05444	-3.07421
Н	-7.46117	-6.34021	-2.01643
Н	-6.48194	-3.07891	3.45381
Н	-5.31796	-4.26823	4.06917
H	-7.01888	-4.36519	4.53619
H	-8.42651	-5.46405	1.26181
H	-8.2/4/2	-3./8144	1./664
H	-8.79853	-5.01149	2.93054
H	-0.74320	- 7.25592	2.19400
п u	-7.14030	-6.72023	3 20106
п ч	-J.43040 5 98596	7 00407	-3 01382
н	6 02271	5 30468	-2 50814
н	6 4835	6 58015	-1 37071
Н	4,20772	8.58338	-2.09401
 H	4.66489	8.18429	-0.4335
 H	2.98557	7.99499	-0.9529
Н	3.62832	6.83773	-3.74183
Н	2.35489	6.21074	-2.69132
Н	3.59727	5.11998	-3.33374
Н	5.47611	7.18118	2.84942
Н	5.83567	6.56994	4.46821

H H	4.17449 7.29397	6.5243 5.58843	3.85041 1.90191
Н	7.19589	3.85414	2.22398
Н	7.60805	4.98054	3.53108
Н	5.36523	2.93388	3.78852
Н	4.12352	4.0222	4.43833
Н	5.7964	4.15548	4.98812
Н	-8.11188	-2.59896	-1.21778
Н	-9.95817	-0.33229	-0.31342
Н	-8.09615	2.65709	-1.07827
Н	-9.31305	0.41309	-2.76534

Atom coordinates for optimized structure YH7

С	
-	
С	
_	
С	
-	
Ν	
_	
С	
~	
С	
~	
С	
_	
С	
Ν	
~	
С	
~	
C	
~	
С	
~	
C	
~	
C	
. -	
N	
Ċ	
Ċ	
\sim	
C	
\sim	
С	
_	
С	
Ν	
С	
-	
С	
С	
С	
_	
С	
_	
С	
~	
С	
_	
С	
_	
С	
_	
С	
_	
С	
~	
С	
~	
С	
\sim	
Ċ	
Ċ	
Ċ	
\sim	
C	
\sim	
C	
С	
C C	
C C	
C C C	
C C C	
C C C C	
C C C C	
C C C C C	

-7.82685	0.72781	-1.08054
-6.65969	1.40264	-0.70513
-1.24877	0.00672	0.3769
4.2434	-1.40494	-0.00638
5.44372	-0.71382	-0.21814
5.44727	0.72098	-0.21133
4.24711	1.41637	-0.01137
6.65591	1.44253	-0.40094
7.68963	2.07048	-0.54469
8.90886	2.7807	-0.71037
10.1531	2.12652	-0.60891
8.92533	4.16461	-0.9/344
10.11494	4.85832	-1.13584
11.34/81	Z.81192	-0.76839
LL.30472	4.19905	-1.04836
7 64984	-2 08514	-0.43781
8 83566	-2 81915	-0.95
8.91563	-4.20368	-0.70208
9.97596	-2.19195	-1.49073
11.13409	-2.90378	-1.76398
10.0696	-4.92384	-0.97134
11.21969	-4.2925	-1.50271
12.55556	4.88342	-1.23624
12.38346	-5.0035	-1.7514
13.81757	4.21728	-0.96437
12.54227	6.33163	-1.34932
12.37463	-6.45264	-1.64818
13.47645	-4.36415	-2.46354
-6.11906	6.33351	-2.00482
-5.24905	5.96387	-3.22115
-5.//888	/./850/	-1.5899
-/.60381	6.26121	-2.43527
-7 16461	4.95157	2.72000
-8.86	0.30927 1 76152	2 33473
-7.05064	3,96851	3.86641
3.67697	-6.47847	-1.26747
5.18198	-6.412	-1.62097
3.32559	-7.90818	-0.79185
2.87252	-6.18775	-2.54864
4.59133	-4.86968	3.47138
4.21229	-3.80822	4.52131
6.10635	-4.74167	3.18289
4.29837	-6.26563	4.07021
-5.98836	-6.31394	-2.14357
-4.97163	-6.0176	-3.26192
-5.80412	-7.78668	-1.70643
-/.41077	-6.12495	-2./2206
-/.4/656	-4.9/54	2.53189
-/.TQ2QT	-4.UZ/US	3./1U41 2.06011
-0.90090 -7 30007	-4.13020 -6 12020	2.00911 3 0301
3 65635	-U.42939 6 17161	J.UJJ⊥ _1 37∩11
J.0J03J	0.4/104	T . J / U T T

С	5.15348	6.3798	-1.75118
С	3.33446	7.91163	-0.90494
С	2.82328	6.17858	-2.63236
С	4.61721	4.92559	3.38005
С	4.33906	6.33186	3.96154
C	6.12791	4.78419	3.07551
C	4 24391	3 88229	4 44993
C	-9 04018	-1 56919	-1 08448
C	-10 33168	-1 29227	-0 82079
C	-11 32696	-2 37812	-0 86351
	12 57207	1 02242	0.56272
0	-12.J/J0/	-1.92343	1 1 2 2 0 0
0	-11.11001	1 50001	1 66107
	-0.03333	1.39904	-1.00107
	-9./88/1	1.33263	-2.59267
	-10.61125	2.4352	-3.12045
0	-11.50264	1.99313	-4.04/16
0	-10.53852	3.61066	-2.80646
H	-11.98975	2.78136	-4.33935
H	-13.15425	-2.7004	-0.61222
H	-2.63101	5.01602	0.82311
H	0.04513	5.01699	0.9896
H	0.04862	-4.99718	1.03139
H	-2.62549	-5.003	0.83589
H	2.67218	3.01415	2.71053
H	4.7643	6.3979	1.10589
H	1.877	4.30077	-1.27613
Н	1.89777	-4.30517	-1.21963
Н	4.75813	-6.37431	1.21903
Н	2.6594	-2.96262	2.75495
Н	-4.17668	-4.20591	-1.72304
Н	-7.39798	-6.31177	0.17399
Н	-5.41972	-3.09182	2.20254
Н	-5.35508	3.05474	2.2677
Н	-7.4067	6.31532	0.38047
н	-4.2787	4.23259	-1.6888
Н	-6.71458	-2.46728	-0.63394
Н	-6.65304	2.48081	-0.77593
н	4.26665	-2.48349	-0.03716
н	4.27565	2 49486	-0.03743
н	10,17203	1.0638	-0.38823
Н	7.98282	4 69784	-1.04862
H	10 07031	5 92226	-1 33181
и П	12 27576	2 26256	-0 67108
и и	8 05008	-1 71569	-0 2934
11 11	0.03000	-1 12047	_1 71
п ц	11 0772	-1.12947	-1.71
п	11.9773	-2.3/413	-2.18946
п 	14 62705	-3.98/3/	-0./0804
п	12 04221	4.90066	-1.18/38
H	13.94331	3.33313	-1.00018
н	13.91362	3.89649	0.08421
Н	11.93589	6.65592	-2.20302
H 	13.55994	6.68696	-1.51632
Н	12.14993	6.82679	-0.44783
H	13.37461	-6.83253	-1.86157

Н	11.67084	-6.92615	-2.34974
Н	12.10922	-6.77542	-0.63481
Н	14.30818	-5.06504	-2.54581
Н	13.8401	-3.48402	-1.92078
Н	13.19552	-4.04382	-3.47854
Н	-5.46637	6.64652	-4.04883
H	-5.45074	4 94619	-3.57082
н	-4 17959	6 04527	-3 00123
н	-5 95538	8 47173	-2 42549
н	-4 72829	7 87353	-1 29373
н	-6 39233	8 11963	-0 74802
н Н	-7 77851	6 91815	-3 29465
и и	-8 27912	6 5806	-1 6367
n u	7 2016	5 24501	-1.0307
H II	-7.0940	J.24J91 7 14217	-2.72100
H	-7.42485	/.1431/	2.50/9/
H	-6.12109	6.5514	3.34393
H	-7.79264	6.56528	4.13/16
H	-9.1/109	5.46261	1.55502
Н	-9.50638	4.92307	3.20478
Н	-9.04001	3.74793	1.96222
Н	-7.21269	2.92806	3.56713
Н	-7.70302	4.16987	4.72214
Н	-6.01584	4.06885	4.20974
Н	5.41511	-7.11602	-2.42777
Н	5.81331	-6.66945	-0.76513
Н	5.46337	-5.40792	-1.9539
Н	3.55038	-8.63729	-1.57851
Н	2.26116	-7.9899	-0.54829
Н	3.89389	-8.19299	0.09852
Н	3.12708	-6.92408	-3.31771
Н	3.09723	-5.19605	-2.95386
Н	1.79321	-6.25099	-2.37652
Н	4.42866	-2.79398	4.17128
Н	4.79139	-3.97249	5.43573
Н	3.15186	-3.85965	4.7889
Н	6.45557	-5.51583	2.49297
Н	6.68033	-4.84147	4.11109
Н	6.34108	-3.76914	2.73887
Н	4,58107	-7.07095	3.38571
Н	3.23321	-6.37906	4.29728
 H	4.86068	-6.4068	5.00014
 H	-5.13692	-6.70257	-4.09969
н	-3 93964	-6 15396	-2 92245
Н	-5 07336	-4 99782	-3 64675
н	-5 93446	-8 45636	-2 56387
и и	-6 53021	-8 08097	-0 9/315
11 U	-1 90220	-7 05161	-1 20636
11	-4.0UZZ9 _7 56040	-6 70656	1.23030 _3 50007
n u	-/.J0240 _7 56252	-0./0000 -5 00/10	-3.3023/
	- 1.00000	-J.U9413	-3.03/8/
н 	-0.10/30	-0.331/3	-1.98622
H	-/.31294	-2.9/658	3.42996
H	-6.1/053	-4.15/5	4.09936
Н	-/.88241	-4.23447	4.52902
Н	-9.22132	-5.39993	1.24897

Н	-9.07168	-3.70772	1.72114
Н	-9.62841	-4.91003	2.89897
Н	-7.57225	-7.1601	2.26235
Н	-8.00393	-6.60708	3.88395
Н	-6.3057	-6.62605	3.37488
Н	5.38349	7.07653	-2.56519
Н	5.40971	5.36918	-2.08568
Н	5.80356	6.62881	-0.90691
Н	3.55212	8.62785	-1.70531
Н	3.92505	8.20008	-0.03048
Н	2.27658	8.01055	-0.64035
Н	3.07031	6.9053	-3.41296
Н	1.74849	6.25521	-2.43878
Н	3.02838	5.181	-3.03355
Н	4.62065	7.12567	3.26327
Н	4.91152	6.48234	4.88377
Н	3.27695	6.45575	4.19748
Н	6.47383	5.54434	2.36883
Н	6.35228	3.80383	2.64373
Н	6.7132	4.89533	3.99536
Н	4.45144	2.86175	4.11315
Н	3.1867	3.94339	4.72824
Н	4.83387	4.0572	5.35539
Н	-8.82313	-2.61506	-1.29861
Н	-10.68728	-0.30394	-0.55814
H	-8.77431	2.64592	-1.37084
H	-9.96382	0.34464	-2.99925

7. Reference

1. Li, K.-L.; Guo, C.-C.; Chen, Q.-Y. Synlett, 2009, 2867-2871

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009