Electronic Supplementary Information

Ultra-high ion selectivity hybrid proton exchange membrane incorporated zwitterion-decorated graphene oxide for vanadium redox flow batteries

Yuxia Zhang,[†] Haixia Wang,[†]* Bo Liu,[†] Jingli Shi,[†] Jun Zhang,[‡] and Haifeng Shi[†]* [†] State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China

[‡] Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

* To whom should be corresponded. E-mail: <u>hxwang@tjpu.edu.cn</u> (H. Wang); <u>haifeng.shi@gmail.com</u> (H. Shi)

Experimental

Materials

Natural graphite powders (NGP) (325 mesh) were purchased from Qingdao Laixi graphite Co., Ltd. Ethylenediamine was supplied by Tianjin Fengchuan Chemical Reagent Technology Co., Ltd. 1-(3-Dimethylaminopropy)-3-ethylcarbodiimide hydrochloride (EDC), N-Hydroxysuccinimide (NHS) and 1, 3-propane sultone were obtained from Sigma-Aldrich. Tetrahydrofuran (THF), N, N-dimethyl formamide (DMF) and concentrated sulfuric acid (H₂SO₄, 98%) were provide by Tianjin Guangfu fine Chemical Research Institute. Sulfonated poly(ether ether ketone) (SPEEK, Mn=38018) with 59% sulfonated degree was prepared in our lab.

Characterization

AFM imaging

AFM imaging measurements were recorded with Dimension Icon (Bruker) under the

tapping mode. For tapping-mode AFM, a commercial Si cantilever (TESP) of about 300 kHz resonant frequency was used.

Sulfonic acid uptake

First, the membrane (W_1) is immersed into 3 mol L⁻¹ H₂SO₄ solution for 24 h at room temperature, and then it is dried till constant (W_2) . SU is calculated by equation (1). Subsequently, the SU membrane is blow-washed by water to remove the outside sulfuric acid, and then it is dried to constant (W3). The SU inside membrane (SUI) is calculated by equation (2).

$$SU = \frac{(W_2 - W_1)/M_{H2SO4}}{W_1}$$
(1)

$$SUI = \frac{(W_3 - W_1)/M_{H2SO4}}{W_1}$$
(2)

Fig. S1 SEM and TEM images of GO (a, b) and ZC-GO (c, d).

Fig. S2 AFM phase image of SPEEK and SPEEK/ZC-GO-2 membranes.

Fig. S3 Cross-section SEM images of SPEEK/ZC-GO-2 hybrid membrane after DMF vapor corrosion.

Fig. S4 Photographs of Nafion 117, SPEEK, SPEEK/ZC-GO-1 and SPEEK/ZC-GO-2 membranes soaked into the solution of 1.5 mol $L^{-1} VO_2^+$ in 3 mol $L^{-1} H_2SO_4$ in the chemical stability test process.

Membranes	ZC-GO (wt%)	SR _{in-plane} (%)	SR _{through-plane} (%)
SPEEK/ZC-GO	1	13.2±0.1	14.9±0.1
	2	12.7±0.2	14.6±0.1
	3	12.2±0.1	14.4±0.1

Table S1. The *in-plane* and *through-plane* swelling ratio of SPEEK/ZC-GO hybrid membranes.

Table S2. Sulfuric acid uptake of SPEEK and SPEEK/ZC-GO membranes.

Membranes	ZC-GO (wt%)	SU (mmol g ⁻¹)	SUI (mmol g ⁻¹)
SPEEK	-	0.59±0.01	0.09±0.02
SPEEK/ZC-GO	0.5	0.77 ± 0.02	0.11±0.01
	1	0.96±0.02	0.13±0.02
	2	1.07±0.03	0.14±0.03
	3	1.28±0.01	0.18±0.03