Electronic Supplementary Information (ESI)

A Silver Wire Aerogel Promotes Hydrogen Peroxide Reduction for Fuel Cells and Electrochemical Sensors

Yang Yang,^{a,b,c}, Heng Zhang,^{a,c} Jinxu Wang,^a Siyuan Yang,^{a,c} Tianyu Liu,^{d,*} Kai Tao^a and Honglong Chang^{a,*}

^a Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

^b Ministry of Education Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China

^c Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, China
 ^d Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
 24061, United States of America

* Corresponding Authors

E-mail: tliu23@vt.edu (T. Liu) E-mail: changhl@cqu.edu.cn (H. Chang)

Supplementary Figures

Fig. S1 EDS spectrum of Ag Wire-gel taken from the area highlighted by the dashed box. Scale bar: $30 \ \mu m$.

Fig. S2 SEM image of pristine carbon fiber paper (CP). Inset: A photograph showing the size of a piece of the pristine CP.

Fig. S3 Ag 3d XPS spectra of (a) Ag Wire@CP and (b) Ag Wire-gel.

Fig. S4 (a and c) N₂ adsorption (blue) - desorption (red) isotherms at 77 K and (c and d) pore size distributions of Ag Wire-gel (a, b) and Ag Wire@CP (c, d).

Fig. S5 Cyclic voltammograms of (a) Ag rod, (b) Ag Wire@CP, and (c) Ag Wire-gel for 50 cycles.

Fig. S6 SEM image of Al plate, the fuel cell anode. Inset: Photograph showing the size of a Al-plate anode.

Fig. S7 (a) Power-densities and (b) polarization curves of H_2O_2 -fed fuel cells equipped with Ag rod, Ag Wire@CP, and Ag Wire-gel cathodes. The power densities and current densities were normalized to the Ag mass.

Supplementary Tables

	СР	Ag rod (diameter = 0.04 cm)	Ag Wire@CP	Ag Wire-gel
Mass loading (mg cm ⁻²)	8	105.3	12 (4 for Ag wires)	4

 Table S1. Mass loadings of CP, Ag rod, Ag Wire@CP and Ag Wire-gel.

Table S2. Elementary composition of Ag Wire-gel determined by EDS.

Element	Intensity (c s-1)	Content (wt.%)	
С	11.31	1.25	
Mg	2.02	0.18	
Ag	479.52	98.57	

Table S3. Parameters and performances of selected μ L-scale fuel cells.

Anodic	Cathodic Catalyst	Electrolyte	I _{max}	P _{max}	Ref.
Catalyst		(A m ⁻		(W m ⁻²)*	
Aluminum	Ag Wire-gel	Anolyte & Catholyte: 0.1 M	631 7+76 6	200 2 + 22 7	This
		H ₂ O ₂ & 1 M NaOH	034.7±20.0	299.3±33.7	work
Silver	Prussian Blue	Anolyte & Catholyte: 0.5 M	57 a	8 ^b	[\$1]
Silver		H ₂ O ₂ & 0.1 M HCl	57		[31]
Nickel	Drugsion Dlug	Anolyte & Catholyte: 0.5 M	101 a	15.5 ^b	[S1]
INICKCI	Flussiali Blue	H ₂ O ₂ & 0.1 M HCl	101 -		
Ni/carbon		Analyta: 3 M Uraa.		39 b	[S2]
Nanotube	Pt/C	Catholyte: 5 M Olda,	230 ^b		
Sponge		Canolyle. O_2			
Dt Du/C	Pt _x Se _y /C (x:y=5:1)	Anolyte: 5 M CH ₃ OH	400 a	30 a	[S3]
PI-KU/C		<i>Catholyte</i> : O ₂	409 *		
Aluminum	Prussian Blue	Anolyte & Catholyte: 0.5 M	15 a	10 ^b	[S4]
Alummum		H ₂ O ₂ & 0.1 M HCl	43 "		
Pt-Ru/Au	$D_{t/CC}$ (40	Anolyte: 4 M CH ₃ OH	166 9	32 ^a	[S5]
COP	Pl/CC (40 Wl%)	<i>Catholyte</i> : O ₂	155 "		
AuAg/C	Vulcan XC-72	Anolyte: Laccase/Glucose	10 (3	5 b	[S6]
		<i>Catholyte</i> : O ₂	19.6 "		
Pt	Carbon Nitride	Anolyte: 2.1 M HCOOH	07.0.3	34.3 ^a	[07]
	Nanofibers	Catholyte: 0.144 M KMnO ₄	97.9 ^a		[87]
Pt	Pt	Anolyte: 2.1 M HCOOH	(1.0.3	30.9 ^a	[S7]
		Catholyte: 0.144 M KMnO ₄	01.8 ª		

Pt	Au	Anolyte: 2.1 M HCOOH	60 / ^a	27.2 ^a	[S7]
		Catholyte: 0.144 M KMnO ₄	00.4		
Pt-Ru	Pt	Anolyte: 0.5 M CH ₃ OH	1400 b	200 ^b	[S8]
		<i>Catholyte</i> : O ₂	1400°		
Pt	Pt/C	Anolyte: H ₂	1000 h	221	[S9]
		<i>Catholyte</i> : O ₂	1000 °		
None	None	Anolyte: V^{2+}/V^{3+}	225	160	[S10]
		<i>Catholyte</i> : VO ₂ ⁺ /VO ²⁺	225		
Bacteria	Pt/C	Anolyte: Acetate	0.00	0.019	[S11]
		<i>Catholyte</i> : O ₂	0.88		
Nickel	Drawsie an Dhae	Anolyte & Catholyte: 0.33	2 (0	0.58	[S12]
Foam	Prussian Blue	M H ₂ O ₂ & 0.067 M HCl	3.08		
None	None	<i>Anolyte</i> : 0.75 M H ₂ O ₂ &		31.2	[813]
		0.75 M NaOH	21 0 h		
		Catholyte: 0.75 M H ₂ O ₂ &	210 °		
		0.325 M H ₂ SO ₄			

*Note: Numbers with superscripts a and b represent the reported values and the estimated values from figures, respectively.

Fuel	Oxidant	Oxidant Open-circuit potential	
		(V)	
H ₂ O ₂	H ₂ O ₂	1.3	This work
CH_4	O_2	0.7	[S14]
H_2O_2	H_2O_2	0.26	[S15]
H_2	O_2	0.81	[S16]
MeOH	O_2	0.93	[S17]
CH ₃ COONa	Ferricyanide	0.56	[S18]

Table S4. Fuels, oxidants and open-circuit voltages of selected µL-scale fuel cells.

Electrode*	Potential (V)**	Sensitivity (µA mM ⁻¹ mm ⁻²)	Limit of Detection (µM)	Linear range (µM)	Ref.
Ag Wire-gel	-0.5 ^a	4.178	2.1	2.1-1000	This work
Ag-SWCNTs	-0.3 ^b	10.92	2.76	16-18085	[S19]
Pt-Pd/MWCNTs	0.25 ^b	4.148	1.2	2.5-125	[S20]
Se/Pt Nanocomposites	0.0 ^a	0.313	3.1	10-1500	[S21]
Ag NPs	-0.3 ^a	~0.476	38.9	100-180000	[S22]
Pt/MWCNTs- PANI	-0.25 ^b	7.484	2.0	7-2500	[\$23]
Pt-MnO-	-0.15 a	1.295	1.0	2-13330	[S24]
Graphene Carbon Fiber Microelectrodes	-0.4 a		1.9	1.9-2000	[\$25]
Nitrogen-Doped CNTs	+0.3 b	0.18	1.2	2-140	[S26]

Table S5. Parameters and performances of selected H_2O_2 sensors.

Note:

*Acronyms: SWCNT: single-wall carbon nanotube; MWCNT: multi-wall carbon nanotube; NP: nanoparticle; PANI: polyaniline.

** Potentials with superscripts a and b are vs. Ag/AgCl and vs. saturated calomel electrode (SCE), respectively.

Supplementary References

- [S1] S. A. Mousavi Shaegh, N.-T. Nguyen, S. M. Mousavi Ehteshami, S. H. Chan, *Energ. Environ. Sci.* 2012, 5, 8225.
- [S2] H. Zhang, Y. Wang, Z. Wu, D. Y. C. Leung, J. Power Sources 2017, 363, 61.
- [S3] J. Ma, A. Habrioux, C. Morais, N. Alonso-Vante, Phys. Chem. Chem. Phys. 2014, 16, 13820.
- [S4] M. Asadnia, S. M. Mousavi Ehteshami, S. H. Chan, M. E. Warkiani, RSC Adv. 2017, 7, 40755.
- [S5] J. P. Esquivel, F. J. Del Campo, J. L. Gómez de la Fuente, S. Rojas, N. Sabaté, *Energ. Environ. Sci.* 2014, 7, 1744.
- [S6] B. López-González, A. Dector, F. M. Cuevas-Muñiz, N. Arjona, C. Cruz-Madrid, A. Arana-Cuenca, M. Guerra-Balcázar, L. G. Arriaga, J. Ledesma-García, *Biosens. Bioelectron.* 2014, 62, 221.
- [S7] A. Jindal, S. Basu, N. Chauhan, T. Ukai, D. S. Kumar, K. T. Samudhyatha, J. Power Sources 2017, 342, 165.
- [S8] A. Calabriso, D. Borello, G. P. Romano, L. Cedola, L. Del Zotto, S. G. Santori, *Appl. Energ.* 2017, 185, 1245.
- [S9] A. Omosebi, R. S. Besser, J. Power Sources 2013, 242, 672.
- [S10] K. S. Salloum, J. D. Posner, J. Power Sources 2011, 196, 1229.
- [S11] J. E. Mink, M. M. Hussain, ACS Nano 2013, 7, 6921.
- [S12] Y. Yang, Y. Xue, F. Huang, H. Zhang, K. Tao, R. Zhang, Q. Shen, H. Chang, ACS Appl. Energy Mater. 2018, 1, 5328
- [S13] S. M. Ha, Y. Ahn, J. Power Sources 2014, 267, 731.
- [S14] M. F. Rabuni, T. Li, P. Punmeechao, K. Li, J. Power Sources 2018, 384, 287.
- [S15] S. M. Ehteshami, M. Asadnia, S. N. Tan, S. H. Chan, J. Power Sources 2016, 301, 392.
- [S16] C. Bretthauer, C. Müller, H. Reinecke, J. Power Sources 2011, 196, 4729.
- [S17] H. C. Peng, C. N. Wang, T. K. Yeh, Y. C. Su, C. Pan, F. G. Tseng, J. Power Sources 2013, 225, 277.
- [S18] S. Choi, J. Chae, Sens. Actuat. 2013, 195, 206.
- [S19] M. N. Bui, X. Pham, K. N. Han, C. A. Li, Y. S. Kim, G. H. Seong, Sens. Actuat. B-Chem. 2010, 150, 436.
- [S20] K. Chen, K. C. Pillai, J. Rick, C. Pan, S. Wang, C. Liu, B. Hwang, *Biosens. Bioelectron.* 2012, 33, 120.
- [S21] Y. Li, J. Zhang, J. Xuan, L. Jiang, J. Zhu, *Electrochem. Commun.* 2010, 12, 777.
- [S22] W. Lu, F. Liao, Y. Luo, G. Chang, X. Sun, *Electrochim. Acta.* 2011, 56, 2295.
- [S23] H. Zhong, R. Yuan, Y. Chai, Y. Zhang, C. Wang, F. Jia, Microchim. Acta. 2012, 176, 389.
- [S24] F. Xiao, Y. Li, X. Zan, K. Liao, R. Xu, H. Duan, Adv. Funct. Mater. 2012, 22, 2487.

- [S25] A. L. Sanford, S. W. Mortan, K. L. Whitehouse, H. M. Oara, L. Z. Morales, J. G. Roberts, L. A. Sombers, Anal. Chem. 2010, 82, 5205.
- [S26] X. Xu, S. Jiang, Z. Hu, S. Liu, ACS Nano, 2010, 4, 4292.