Supporting Information

Pt (111) quantum dots decorated flower-like α Fe₂O₃ (104) thin film

nanosheets as highly efficient bifunctional electrocatalyst for overall

water splitting

Bo Ye,^a Lirong Huang,^a Yanping Hou,^{abc} Ronghua Jiang,^d Lei Sun,^e Zebin Yu,*^a Boge Zhang,^a Yiyi Huang^a and Yalan Zhang^a

- ^{a.} School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R. China. E-mail: xxzx7514@aliyun.com, xxzx7514@hotmail.com.
- ^{b.} Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning 530007, P.R. China.
- ^{c.} Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
- ^{d.} School of Chemical and Environmental Engineering, Shaoguan University, Guangdong 512005, P.R. China.
- e. Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

Figure S1 EDS image of $Pt-\alpha Fe_2O_3/NF$.

Figure S2 FSEM images of Pt /NF.

Figure S3 OER electrocatalytic activity of Pt-αFe₂O₃/NF obtained from different

electrodeposition times.

Figure S4 CV of (a) $Pt-\alpha Fe_2O_3/NF$, (b) $\alpha Fe_2O_3/NF$,(c) Pt/NF,(d)NF.

Figure S5 C_{dl} of NF, $\alpha Fe_2O_3/NF$, Pt/NF and Pt- $\alpha Fe_2O_3/NF$.

Figure S6 HER electrocatalytic activity of Pt-aFe₂O₃/NF with different amounts of Pt

quantum dots loading.

Figure S7 XRD patterns of Pt-aFe₂O₃/NF in initial and after working for 50h.

Electrode	Theoretical Pt loading	Experimental Pt loading		
	(mg cm ⁻²)	(mg cm ⁻²)		
Pt/NF	0.1951	0.0503		
Pt-aFe ₂ O ₃ /NF	0.1951	0.1524		

Table S1 Comparison of theoretical Pt loading and experimental Pt loading on bothPt/NF and Pt- α Fe₂O₃/NF electrodes.

	$R_s(\Omega)$	$R_{ct}(\Omega)$	$R_{int}(\Omega)$
NF	0.92	25.17	26.09
$\alpha Fe_2O_3/NF$	0.87	9.19	10.06
Pt/NF	1.01	17.02	18.03
Pt-aFe ₂ O ₃ /NF	0.87	7.14	8.01

 Table S2 Fitting results of various resistances of oxygen evolution system with

 different electrodes.

 Table S3 Fitting results of various resistances of hydrogen evolution system with

 different electrodes.

	$R_s(\Omega)$	$R_{ct}(\Omega)$	$R_{int}(\Omega)$
NF	1.08	16.06	17.14
$\alpha Fe_2O_3/NF$	0.98	7.20	8.18
Pt/NF	1.25	11.44	12.69
Pt-αFe ₂ O ₃ /NF	0.80	0.81	1.61

Catalyst	Electrolyte	Overpotential (mV) for OER at a specific current density(mA cm ⁻²)	Overpotential (mV) for HER at a specific current density(mA cm ⁻²)	Overpotential (V) for overall water splitting at a specific current density(mA cm ⁻²)	Pt wt% (EDS)	Ref
IrPt	$0.5M H_2SO_4$	8@320	-	-	56	1
Pt-Ni-Co	0.1M KOH	-	5 @22	-	85.61	2
Cu-Pt/NPCC	$0.1M H_2SO_4$	-	10@298	-	16.92	3
Pt-NiFe LDH-ht	1M KOH	10@230	10@101	1.505	1.51	4
Pt-aFe ₂ O ₃ /NF	1M KOH	10@153	10@90	1.51	2.05	This work
Ti/IrO ₂ -Ta ₂ O	$0.5M H_2SO_4$	12@170	-	-	-	5
NiSe/NF	1M KOH	10@271	10@137	1.69	-	6
CoFe/NF	1M KOH	100@230	100@160	1.68	-	7
CdS/Ni ₃ S ₂ /PNF	1M KOH	100@400	10@121	-	-	8
P-Co ₃ O ₄ /NF	1M KOH	20@260	10@97	1.63	-	9
Co_3S_4 (a) MoS_2	$0.5M H_2SO_4$	10@330	10@210	1.58	-	10
NiFe-oxide	1M KOH	10@339	10@347	1.67	-	11
MoWS ₂ @Ni ₃ S ₂	1M KOH	10@285	10@98	1.62	-	12
FeCoO-NF	1M KOH	10@224	10@205	1.62	-	13
Fe-NiO/NF	1M KOH	10@206	10@88	1.579	-	14

Table S4 Different materials and $Pt-\alpha Fe_2O_3/NF$ electrodes for OER, HER and overall water splitting.

References

- 1. M. Sung and J. Kim, Int. J. Hydrogen Energy, 2018, 43, 2130-2138.
- 2. A. Oh, Y. J. Sa, H. Hwang, H. Baik, J. Kim, B. Kim, S. H. Joo and K. Lee, Nanoscale, 2016, **8**, 16379-16386.
- S. Mandegarzad, J. B. Raoof, S. R. Hosseini and R. Ojani, *Electrochim. Acta*, 2016, 190, 729-736.
- 4. S. Anantharaj, K. Karthick, M. Venkatesh, T. V. S. V. Simha, A. S. Salunke, L. Ma,
 H. Liang and S. Kundu, *Nano Energy*, 2017, **39**, 30-43.
- B.-s. Li, A. Lin and F.-x. Gan, *Transactions of Nonferrous Metals Society of China*, 2006, 16, 1193-1199.
- H. Ren, Z.-H. Huang, Z. Yang, S. Tang, F. Kang and R. Lv, *J. Energy Chem.*, 2017,
 26, 1217-1222.
- X. Zhao, X. Shang, Y. Quan, B. Dong, G.-Q. Han, X. Li, Y.-R. Liu, Q. Chen, Y. M. Chai and C.-G. Liu, *Electrochim. Acta*, 2017, 230, 151-159.
- 8. S. Qu, J. Huang, J. Yu, G. Chen, W. Hu, M. Yin, R. Zhang, S. Chu and C. Li, *ACS Appl. Mater. Interfaces*, 2017, **9**, 29660-29668.
- Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang and X. Sun, ACS Catal.,
 2018, 8, 2236-2241.
- 10. Y. Guo, J. Tang, H. Qian, Z. Wang and Y. Yamauchi, *Chem. Mater.*, 2017, **29**, 5566-5573.
- A. Kumar and S. Bhattacharyya, ACS Appl. Mater. Interfaces, 2017, 9, 41906-41915.

12. M. Zheng, J. Du, B. Hou and C.-L. Xu, ACS Appl. Mater. Interfaces, 2017, 9, 26066-26076.

- H. A. Bandal, A. R. Jadhav, A. H. Tamboli and H. Kim, *Electrochim. Acta*, 2017,
 249, 253-262.
- 14. Z. Wu, Z. Zou, J. Huang and F. Gao, J. Catal., 2018, 358, 243-252.