Supporting Information for

Bifunctional MoS₂-based solar evaporator for both efficient water evaporation and clean freshwater collection

Rong Chen, Xun Wang, Qimao Gan, Tuqiao Zhang, Kehang Zhu and Miaomiao Ye* Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, P R China

*Corresponding author:

Tel.: +86-571-88206759; Fax: +86-571-88208721.

Email address: yemiao008@zju.edu.cn.

Number of pages: 9

Number of figures: 6

Number of tables: 3

Fig. S1 XRD pattern and EDS of the as-prepared MoS₂ nanoflowers.

Fig. S2 Air-laid paper (a) without and with (b) $0.004 \text{ kg} \cdot \text{m}^{-2}$, (c) $0.016 \text{ kg} \cdot \text{m}^{-2}$, (d) $0.040 \text{ kg} \cdot \text{m}^{-2}$, (e) $0.080 \text{ kg} \cdot \text{m}^{-2}$, (f) $0.160 \text{ kg} \cdot \text{m}^{-2}$ MoS₂ deposition.

Fig. S3 The 3D optical microscope images of air-laid paper with (a) 0.004 kg·m⁻², (b) $0.016 \text{ kg} \cdot \text{m}^{-2}$, (c) $0.080 \text{ kg} \cdot \text{m}^{-2}$, and (d) $0.160 \text{ kg} \cdot \text{m}^{-2}$ MoS₂ nanoflowers deposition.

Fig. S4 The temperature above and below the foam under 2 sun solar irradiance.

Fig. S5 Water-uptake behavior of the EPE foam warped with air-laid paper (EPE-ALP).

Fig. S6 The surface temperatures at first 5 minutes solar irradiance with and without MSE under different intensity of 1, 2, and 5.5 sun.

0 1	MoS ₂	Total	UV	Visible	Infrared
Sample	(kg·m ⁻²)	Absorption	280-400 nm	400-760 nm	760-2200 nm
Solar	_	100.00%	4.45%	49.37%	46.18%
ALP	0	3.68%±0.08%	$1.08\% \pm 0.06\%$	1.54%±0.01%	1.06%±0.03%
Sample-1	0.004	$82.66\% \pm 0.07\%$	3.72%±0.04%	$40.82\% \pm 0.40\%$	$38.12\% \pm 0.36\%$
Sample-2	0.016	95.39%±0.08%	4.21%±0.01%	46.91%±0.17%	44.27%±0.16%
Sample-3	0.040	96.64%±0.13%	$4.24\% \pm 0.04\%$	$47.72\% \pm 0.07\%$	$44.68\% \pm 0.06\%$
Sample-4	0.080	96.02%±0.70%	4.28%±0.25%	47.26%±0.39%	44.48%±0.21%
Sample-5	0.160	96.15%±0.53%	4.22%±0.11%	46.72%±0.98%	45.21%±0.78%

 Table S1 The proportion of solar absorption of different samples in different spectrum regions.

*ALP: Air-laid paper

Table S2 The zero-order kinetic equations	and evaporation	efficiencies of	different	water
evaporation processes.				

evuporum	on processes.			
Process	Zero-order kinetic	k_1	k_2	\mathbf{D}^{2}
	equations	(kg·m ⁻² ·min ⁻¹)	$(kg \cdot m^{-2} \cdot h^{-1})$	R²
1#	y=0.00602x-0.02363	0.00602	0.36	0.98106
2#	y=0.02531x-0.02910	0.02531	1.52	0.99905
3#	y=0.00731x-0.01341	0.00731	0.44	0.99764
4#	y=0.01091x-0.03367	0.01091	0.65	0.99311

* k_1 : water evaporation rate; k_2 : water evaporation rate;

Water evaporation under two sun solar irradiation by different processes:

(1#) water itself evaporation

(2#) MSE with 0.04 kg \cdot m² of MoS₂ and 2 cm of EPE foam

(3#) air-laid paper wrapped over the 2 cm of EPE foam (paper-foam)

(4#) 0.04 kg·m² of hydrophobic MoS₂ directly float on water surface

Table 55 The vapor pressure and trendy's constant of three compounds.					
Compound	Molecular Formula	Vapor Pressure mm Hg at 25 °C (est)	Henry's constant atm-m ³ /mole		
Nitrobenzene	C ₆ H ₅ NO ₂	0.245 (PubChem)	2.44×10^{-5} (PubChem)		
Carbamazepine	$C_{15}H_{12}N_2O$	1.84×10^{-7} [1]	1.08×10^{-10} (PubChem)		
Naproxen	$C_{14}H_{14}O_3$	1.89×10^{-6} (PubChem)	3.39×10^{-10} (PubChem)		

Table S3 The vapor pressure and Henry's constant of three compounds

Energy balance analysis:

According to previous report of J. Zhu's group and Qu's group [2,3], the main energy consumption under input heat flux of 1 kW·m⁻² could be caused by the approach as follows:

(1) Water evaporation consumption (η):

The water evaporation consumption is 80%, which is equal to the evaporation efficiency.

(2) Reflection loss (η_{ref}):

The solar absorption of black wood membrane is up to 96.64%. Thus, η_{ref} is about 3.36%.

```
(3) Conduction loss (\eta_{cond}):
```

 $\boldsymbol{\eta}_{\text{cond}} = Cm \varDelta T \tag{1}$

Where η_{cond} is the heat energy, C is the specific heat capacity of water (4.2 kJ °C⁻¹

kg⁻¹), m (140 g) is the weight of pure water used in this experiment. ΔT (0.08 °C) is the average temperature difference of pure water after and before solar illumination under 1 sun after 1 h. The conduction loss is calculated ~4.7%.

(4) Radiation loss (η_{rad}):

The radiation heat loss was calculated by the Stefan-Boltzmann equation.

$$\boldsymbol{\eta}_{rad} = \varepsilon A \sigma (T_1^4 - T_2^4) \tag{2}$$

Where η_{rad} represents heat flux, ε is the emissivity(assumed a maximum emissivity of 1), and *A* is the surface area, σ is the Stefan-Boltzmann constant (5.67×10⁻⁸ W/m² K⁴), T_1 is the average surface temperature (\approx 314.15 K) of MSE at a steady state condition, and T_2 is the ambient temperature (\approx 308.15 K) upward the MSE under the illumination of constant 1 kW m² solar flux. According to the equation (2), the radiation heat loss is calculated ~6.52%.

(5) Convection loss (η_{conv}):

$$\boldsymbol{\eta}_{\text{conv}} = hA(T_1 - T_2) \tag{3}$$

Where η_{conv} represents heat energy, *h* is the convection heat transfer coefficient (assumed to 5 W m⁻² K as reported [4]), and A is the surface area, T_1 and T_2 are the same as mentioned above. The η_{conv} is 4.77%.

Therefore, the total energy consumption of the five main parts is about 99.35% (80% + $3.36\% + 4.70\% + 6.52\% + 4.77\% \approx 99.35\%$), which is almost all input energy.

References

- [1] PubChem, U.S. National Library of Medicine. Available online at: https://pubchem.ncbi.nlm.nih.gov/search/
- [2] N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu and J. Zhu, Adv. Mater., 2017, 29,1606762.
- [3] P. Zhang, Q. Liao, T. Zhang, H. Cheng, Y. Huang, C. Yang, C. Li, L. Jiang and L. Qu, *Nano Energy*, 2018, 46, 415-422.
- [4] Y. Yang, H. Zhao, Z. Yin, J. Zhao, X. Yin, N. Li, D. Yin, Y. Li, B. Lei, Y. Du and W. Que, *Materials Horizons*, 2018, 5, 1143-1150.