Supporting information

Fluffy carbon-coated red phosphorus as a highly stable and high rate anode for lithium ion batteries

Huan Liu^{a,1}, Shixue Zhang^{b,1}, Qizhen Zhu^b, Bin Cao^b, Renjie Chen^{a,*}, Peng Zhang^b, Ning Sun^b, Bin Xu^{b,*}, Feng Wu^a

^a School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China. *E-mail: chenrj@bit.edu.cn (R. Chen)

^b State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China. *E-mail: xubin@mail.buct.edu.cn, binxumail@163.com (B. Xu).

H. Liu and S. Zhang contributed equally to this paper.

Fig. S1 SEM images of the FC.

Fig. S2 XRD (a), Raman (b) spectra, nitrogen adsorption-desorption isotherms (c, e, f) and the pore size distribution (d) for FC and NFC sample.

Fig. S3 XPS of P 2p (a) and C 1s (b) for NFC/RP28.

Fig. S4 The CV curves of NFC (a), FC@RP55 (b) and FC@RP37 (c) at a scan rate of 0.1 mV s⁻¹. Voltage profiles of NFC (d) at the current density of 0.1C (1C=372 mAh g⁻¹), FC@RP55 (e), and FC@RP37 (f) at 0.05C (1C=2600 mA g⁻¹).

Fig. S5 Cycle performance of pure red P and FC@RP19 electrode at 0.05C.

Fig. S6 SEM images of FC@RP19 and FC@RP28 electrodes after 20th cycle.

Fig. S7 Rate performance of FC and NFC at different current density (a). Cycle performance of FC and NFC electrode at a current density of 1C (372 mA g^{-1}).

Sample	P/C ratio	Preparation method	Initial charge	Cycle performance	Ref.
	or	capacity / mAh			
	P wt %		g-1		
Ring-shaped phosphorus/	16	Vapor phase reaction	1206 at 0.5 A g ⁻¹	58.8 % capacity retention	[1]
MWCNTs				over 10 cycle	
Red phosphorus/graphene	40	Electro-spraying and	~1763 at 0.1 A g ⁻¹	Capacity of ~1542 mAh g-1	[2]
		far-infrared reduction		is retained after 100	
				cycles	
Red P/ carbon film	21	Vapor phase polymerization	~1511 at 0.1 A g ⁻¹	Capacity of 903 mAh g ⁻¹	[3]
				after 640 cycles	
Hollow red-phosphorus	60	Wet solvothermal method	1285.7 at 0.52 A g ⁻¹	Capacity (based on P) of	[4]
nanospheres				1048.4 mA h g ⁻¹ at 1 C	
				after 600 cycles	
Red phosphorus/RGO	10	Sonication technique	~850 at 50 mA g ⁻¹	Capacity of 706 mA h g ⁻¹ at	[5]
films				50 mA g ⁻¹ after 200	
				cycles.	
Phosphorus/ carbon	70	Wet ball-milling	1396.6 at 50 mA g ⁻¹	~90 % capacity retention	[6]
nanotubes				over 50 cycles.	
Phosphorus/carbon	60	Ball-milling	1585.3 mAh g ⁻¹ at	Capacity retention of 68.3%	[7]
composites			0.1 C	over 200 cycles	
Phosphorus/graphene	80	Solution-based method	~1555 mAh g^{-1} at	Capacity of 1286 mA h g ⁻¹	[8]
composites			0.2 Ag^{-1}	after 100 cycles at 0.2 A	
				g ⁻¹	
Phosphorus/active carbon	47	Vaporization-condensation	2130 mAh g ⁻¹ at	Capacity of 1370 mAh g-1	[9]
			0.15A g ⁻¹	after 85 cycles at 0.3 A	
				g-1	
Phosphorus/ carbon	80	Ball-milling	2133.4 mA h g ⁻¹ at	Capacity of 998.5 mAh g-1	[10]
nanotubes			0.05C	after 50 cycles	
Phosphorus/graphene	70	High-pressure-assisted	1876 mAh g ⁻¹ at 50	Capacity of 990 mAh g-1	[11]
		spraying	mA g ⁻¹	after 50 cycles	
Amorphous red	80	Ball-milling	1699.5 mAh g ⁻¹ at	\sim 1230 mAh g ⁻¹ at 1C over	This work
phosphorus@ fluffy			0.05C	1000 cycles with 96% of	
hard carbon				capacity retention	
composites					

Table S1. Electrochemical performance comparison of phosphorus/carbon composites as anode for lithium-ion batteries.

Sample	R _S /Ohm	R _{ct} /Ohm
FC@RP19	4.18	135.9
FC@RP28	4.09	43.13
FC@RP37	4.02	48.67
FC@RP55	3.92	77.58

Table S2. The R_{s} and R_{ct} for all the FC@RP electrodes.

_

Fig. S8 The potential response curves of FC@RP during GITT measurements with the inset of the magnified area illustrating the overpotential (a-d). Overpotential values estimated from the GITT results for 5th cycle (e-h).

The cell voltage is linearly proportional to $\sqrt{\tau}$, as shown in Figure S8b. The diffusion coefficient (D) can be calculated from the GITT potential profiles by Fick's second law, as the following equation:

$$D = \frac{4}{\pi\tau} (\frac{m_B V_M}{M_B S})^2 (\frac{\Delta E_S}{\Delta E_\tau})^2$$
 (equation S1)

The τ is the titration time, m_B is the electrode active material mass, S is the geometric area of the Cu foil electrode, ΔE_s is the quasi-thermodynamic equilibrium potential difference before and after the current pulse, ΔE_{τ} is the potential difference during current pulse, V_M is the molar volume, M_B is the molar mass.

Fig. S9 GITT profile of the FC@ RP electrodes in the charge state (a), and linear behavior of the potential $vs.\sqrt{\tau}$ relationship in GITT at 1.824 V vs. Li⁺/Li of forth lithiation process of FC@RP28 for LIBs.

Fig. S10 Voltage profiles of all FC@RP electrodes show the voltage hysteresis between the charge and discharge at 1C.

Reference

[1] D. Zhao, J. Zhang, C. Fu, J. Huang, D. Xiao, M.M.F. Yuen, C. Niu, Enhanced cycling stability of ring-shaped phosphorus inside multi-walled carbon nanotubes as anodes for lithium-ion batteries, Journal of Materials Chemistry A 6(6) (2018) 2540-2548.

[2] Z. Yue, T. Gupta, F. Wang, C. Li, R. Kumar, Z. Yang, N. Koratkar, Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries, Carbon 127 (2018) 588-595.

[3] J. Ruan, T. Yuan, Y. Pang, X. Xu, J. Yang, W. Hu, C. Zhong, Z.F. Ma, X. Bi, S. Zheng, Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage, ACS applied materials & interfaces 9(41) (2017) 36261-36268.

[4] J. Zhou, X. Liu, W. Cai, Y. Zhu, J. Liang, K. Zhang, Y. Lan, Z. Jiang, G. Wang, Y. Qian, Wet-Chemical Synthesis of Hollow Red-Phosphorus Nanospheres with Porous Shells as Anodes for High-Performance Lithium-Ion and Sodium-Ion Batteries, Advanced materials 29(29) (2017).

[5] C.M. Subramaniyam, Z. Tai, N. Mahmood, D. Zhang, H.K. Liu, J.B. Goodenough, S.X. Dou, Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries, J. Mater. Chem. A 5(5) (2017) 1925-1929.

[6] Z. Xu, Y. Zeng, L. Wang, N. Li, C. Chen, C. Li, J. Li, H. Lv, L. Kuang, X. Tian, Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries, Journal of Power Sources 356 (2017) 18-26.

[7] J. Xu, I.-Y. Jeon, J. Ma, Y. Dou, S.-J. Kim, J.-M. Seo, H. Liu, S. Dou, J.-B. Baek,
L. Dai, Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries, Nano Research 10(4) (2017) 1268-1281.

[8] L. Sun, Y. Zhang, D. Zhang, Y. Zhang, Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries, Nanoscale 9(46) (2017) 18552-18560.

[9] J. Li, L. Wang, X. He, J. Wang, Effect of Pore Size Distribution of Carbon Matrix on the Performance of Phosphorus@Carbon Material as Anode for Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering 4(8) (2016) 4217-4223.

[10] D. Yuan, J. Cheng, G. Qu, X. Li, W. Ni, B. Wang, H. Liu, Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries, Journal of Power Sources 301 (2016) 131-137.

[11] L. Wang, H. Guo, W. Wang, K. Teng, Z. Xu, C. Chen, C. Li, C. Yang, C. Hu, Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries, Electrochimica Acta 211 (2016) 499-506.