Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

A safe and fast-charging lithium-ion battery anode using MX ene supported ${\rm Li}_3{\rm VO}_4$

Yanghang Huang,[†]a Haochen Yang,[†]a Yi Zhang,^{*ab} Yamin Zhang,^a Yutong Wu,^a Mengkun Tian,^c Peng Chen,^a Robert Trout,^a Yao Ma,^a Tzuho Wu,^a Yuping Wu^{*b} and Nian Liu^{*a}

^a School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

^b College of Energy and Institute for Electrochemical Energy Storage, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China

^c Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA

[†] These authors contributed equally to this work.

Email: nian.liu@chbe.gatech.edu

zhangy@njtech.edu.cn

wuyp@njtech.edu.cn

Figure S1. The binding between Ti atomic of MXene and O atomic of LVO.

Figure S2. SEM images of (a) MAX and (b) MXene.

Figure S3. (a) SEM image and (b) EDX mapping of MAX.

Figure S4. (a) SEM image and corresponding EDX mapping of (b) V, (c) O, (d) Ti and (e) C in the $LVO/Ti_3C_2T_x$ MXene composite.

Figure S5. The morphology of LVO composites from past works (six images on the two sides) and our work (center). The intrinsic electrical conductivity of LVO is low. Compositing LVO with conductive materials such as graphene^{1, 2}, carbon nanotubes³, graphite⁴, Ni⁵ and MoS₂⁶ have been tried before. However, most of the past works still contain a large amount of LVO clusters on the surface of MXene nanosheets (**Figure S5**). In our work, the uniform LVO nanoparticles were uniformly grown onto MXene nanosheets. We believe the reason is that MXene is composed of metal and carbon, and the metal ion termination gives it strong affinity with LVO, which allows the uniform growth of LVO on MXene, as illustrated in **Figure S1**.

Figure S6. SEM images of LVO/Ti $_3C_2T_x$ MXene composite after 10 minutes sonication.

Figure S7. Low-magnification TEM images of (a) $Ti_3C_2T_x$ MXene and (b) LVO/ $Ti_3C_2T_x$ MXene.

Figure S8. The first cycle charge/discharge curves of $LVO/Ti_3C_2T_x$ MXene composite anode in the voltage window of 0.1 V to 3.0 V at 0.1 C.

Figure S9. Rate performance of pure $Ti_3C_2T_x$ MXene.

Figure S10. Discharge specific capacity and Coulombic efficiency of LVO/Ti₃C₂Tx MXene anode

cycled at 5 C.

Figure S11. Capacity retention of LVO/Ti₃C₂Tx MXene cycled at 5 C and 10 C.

Figure S12. SEM images of LVO/Ti $_3C_2Tx$ MXene composite anode (a) before and (b) after 1000 cycles at 5 C.

Table S1. Comparison of electrical conductivity between MXene, Graphene, GrapheneOxide (GO) and Reduced Graphene Oxide (RGO)

	Mxene ⁷	Graphene ^{8,9}	GO ¹⁰	RGO ¹¹
Electrical Conductivity (S/m)	240000	500	Insulation	1.14

Table S2. Performance comparison of our LVO/MXene anode with other similar anodes.

Anodes	High rate capacity	High rate cycle stability	Reference
LVO@C ¹²	147 mAh g ⁻¹ at 0.75C	Not reported	J Mater Chem A, 2015,
			3, 11253
O-Deficient	90 mAh g ⁻¹ at 5C	No reported	Adv. Sci. 2015, 2,
LVO ¹³	(20% acetylene black)	no reported	1500090

I VO/CNT ¹⁴	87 mAh g ⁻¹ at 5C	Not reported	ACS Nano 2016, 10,	
LVO/CIVI	62 mAh g ⁻¹ at 10C	Not reported	5398	
LVO	107 mAh g ⁻¹ at 5C	Not reported	ACS Appl Mater Inter,	
nanoparticle ¹⁵	(20% acetylene black)	Not reported	2016 , 8, 23739	
LVO Podlé	150 mAh g ⁻¹ at 5C	Not provided	J. Mater. Chem. A, 2018,	
L V O-Kou	110 mAh g ⁻¹ at 5C	Not provided	6, 456	
LVO@C	141 mAh g ⁻¹ at 5C	Not reported	Sci Bull 2017 62 1091	
nanofibers17	98 mAh g ⁻¹ at 10C	Not reported	Sci. Duii. 201 7, 02, 1081	
hollow-	140 mAh σ^{-1} at 5C	$100 \text{ mAh } \sigma^{-1}$ after 1000 cycles at 10C	Chem Eur J 2014 20	
structured	110 mAh g-l at 10C	(20% corbon block)	5608 5612	
LVO ¹⁸	110 mAn g ⁺ at 10C	(20% carbon black)	5008-5012	
LVO	86 m A h g-1 at 10C	71 mAh g ⁻¹ after 1000 cycles at 10C	J. Solid State Electro -	
nanoparticle19	so man g · at 10C	(20% carbon black)	chem. 2017, 21, 2547	
	250 mAh g ⁻¹ at 5C		Chem. Commun. 2015,	
LVO@GNs ²⁰	210 mAh g ⁻¹ at 10C	163 mAh g ⁻¹ after 5000 cycles at 5C	51, 229-231	
LVO@	141 mAh g ⁻¹ at 5C	103 mAh g ⁻¹ after 1000 cycles at 10C	J. Alloy. Comp.	
N-doped C ²¹	60 mAh g ⁻¹ at 10C	(20% acetylene black)	2018 , 767, 657	
	187 mAh σ ⁻¹ at 5С	146 mAh g ⁻¹ after 1000 cycles at 5C		
I VO/MVene	107 mAn g at 3C	81 mAh g ⁻¹ after 1000 cycles at 10C	This work	
	114 mAn g [*] at 10C	(only 10% carbon black)		

Reference:

- 1. J. Liu, P.-J. Lu, S. Liang, W. Wang, M. Lei, S. Tang and Q. Yang, Nano Energy, 2015, 12, 709
- Y. Shi, J.-Z. Wang, S.-L. Chou, D. Wexler, H.-J. Li, K. Ozawa, H.-K. Liu and Y.-P. Wu, *Nano Lett.*, 2013, 13, 4715–4720
- 3. Q. Li, J. Sheng, Q.Wei, Q. An, X. Wei, P. Zhang, and L.Mai. Nanoscale 2014, 19, 11072-11077.
- 4. J. Zhang, S.Ni, J. Ma, X. Yang, and L.Zhang. Journal of Power Sources 2016, 301, 41-46.
- 5. S. Ni, J. Zhang, X. Lv, X. Yang, and L. Zhang. Journal of Power Sources 2015, 291, 95-101.
- M. Zhang, X. Bai, Y. Liu, Y.Zhang, Y.Wu, D. Cui, Y. Liu, L. Wang, B Li, and X. Tao. *Applied Surface Science* 2019, 469, 923-932.
- Z. Ling, C. E. Ren, M.-Q. Zhao, J. Yang, J. M. Giammarco, J. Qiu, M. W. Barsoum and Y. Gogotsi, *Proc. Natl. Acad. Sci.*, 2014, **111**, 16676–16681.
- H. D. Pham, V. H. Pham, T. V. Cuong, T. D. Nguyen-Phan, J. S. Chung, E. W. Shin and S. Kim, *Chem. Commun.*, 2011, 47, 9672–9674.

- B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning and G. de With, *Powder Technol.*, 2012, 221, 351–358.
- S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, *Carbon N. Y.*, 2007, 45, 1558–1565.
- 11. B.-S. Kong, H.-W. Yoo and H.-T. Jung, Langmuir, 2009, 25, 11008–11013.
- 12. G. Shao, L. Gan, Y. Ma, H. Li and T. Zhai, J. Mater. Chem. A, 2015, 3, 11253-11260
- 13. L. Chen, X. L. Jiang, N. N. Wang, J. Yue, Y. T. Qian and J. Yang, Adv. Sci., 2015, 9, 1500090
- E. Iwama, N. Kawabata, N. Nishio, K. Kisu, J. Miyamoto, W. Naoi, P. Rozier, P. Simon and K. Naoi, *ACS Nano*, 2016, 10, 5398–540
- L. L. Zhou, S. Y. Shen, X. Peng, L. N. Wu, Q. Wang, C. H. Shen, T. T. Tu, L. Huang, J. T. Li and S. G. Sun, *ACS Appl. Mater. Interfaces*, 2016, 8, 23739
- G. Yang, B. Zhang, J. Feng, Y. Lu, Z. Wang, V. Aravindan, M. Aravind, J. Liu, M. Srinivasan, Z. Shen and Y. Huang, *J. Mater. Chem. A*, 2018, 6, 456–463.
- 17. G. Shao, H. Li, R. Qin, J. Hou, Z. Zheng and T. Zhai, Sci. Bull., 2017, 62, 1081-1088.
- Y. Shi, J. Cao, H. D. Abruna, H. J. Li, H. K. Liu, D. Wexler, J. Z. Wang and Y. P. Wu, *Chem.-Eur. J.*, 2014, **20**, 5608
- S. Chou, D. Wexler, Z. Zhang, H. Li, Y. Shi, H. D. Abruña, J. Wang, J. Gao, H. Liu, J. Wang, Y. Zhang, Y. Wu and L. Liu, *J. Solid State Electrochem.*, 2016, 21, 2547–2553.
- Z. Jian, M. Zheng, Y. Liang, X. Zhang, S. Gheytani, Y. Lan, Y. Shi and Y. Yao, *Chem. Commun.*, 2015, 51, 229
- 21. H. Park, W. Jae and J. Kim, J. Alloys Compd., 2018, 767, 657-665.