Penta-Pd X_2 (X = S, Se, Te) monolayers: promising

anisotropic thermoelectric materials

Yang-Shun Lan¹, Xiang-Rong Chen¹, Cui-E Hu^{2,*}, Yan Cheng^{1,*}, Qi-Feng Chen³

¹College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;

²College of Physics and Electronic Engineering, Chongqing Normal University,

Chongqing 400047, China;

³ National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid

Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China

Abstract: Thermoelectric materials can be used to convert waste heat into electrical energy, which is considered to be a cleaner form of energy that reduces carbon dioxide and greenhouse gas emissions. In this work, we study the thermoelectric properties of penta-PdX₂ (X = S, Se, Te) using first-principles calculations together with the Boltzmann transport theory. The dynamic and thermal stability of penta-PdX₂ is confirmed based on phonon dispersion and *ab initio* molecular dynamics (AIMD) simulations. The transport coefficients, such as thermal conductivity (k_l), power factor (*PF*) and thermoelectric figure of merit (*ZT*), exhibit strong anisotropy in both *x* and *y* directions. The lower thermal conductivity of penta-PdX₂ along the same direction (*x* or *y* direction) adheres to a trend of PdS₂ > PdSe₂ > PdTe₂. The anisotropy of *PF* and k_l of penta-PdX₂ monolayer inevitably leads to anisotropy of *ZT*.

^{*} Corresponding authors. E-mail: <u>cuiehu@126.com; ycheng@scu.edu.cn</u>

The largest *ZT* values of penta-PdX2 (X = S, Se) at p-type are 0.85 and 1.18 respectively, while the maximum *ZT* value of penta-PdTe2 has reached 2.42. The predicted *ZT* value in penta-PdX₂ are larger than the commercial TE material Bi₂Te₃ (about 0.8) and some other transition metal di-chalcogenides, indicating that penta-PdX₂ (X = S, Se, Te) monolayer is a potential anisotropic thermoelectric material.

Key words: Pentagonal structure; First-principles investigations; Thermal transport; Thermoelectric material

Table S1. Calculated effective mass (m^*) , average effective mass (m_d) , elastic modulus (C_{2D}) , deformation potential constant (E_1) , carrier mobility (μ) and relaxation time (τ) of penta-PdX₂ (X = S, Se, Te) monolayers at 300 K along the *x* and *y* directions.

	directions	carriers	$m^*(m_e)$	<i>m</i> _d (m _e)	$C_{2D} (\mathrm{eV}/\mathrm{\AA}^2)$	$E_l(eV)$	$\mu (\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1})$	$\tau (10^{-14} \mathrm{s})$
PdS ₂	x	e	0.82	0.48	3.54	-8.80	39.40	1.83
		h	0.46	0.83	3.54	-1.37	1664.15	43.61
	у	e	0.28	0.48	4.89	-9.36	137.49	2.23
		h	1.49	0.83	4.89	-1.46	631.94	53.46
PdSe ₂	x	e	0.33	0.20	2.36	-8.15	177.13	3.33
		h	0.36	0.25	2.36	-2.40	1485.92	30.84
	у	e	0.12	0.20	3.85	-8.85	630.21	4.61
		h	0.18	0.25	3.85	-2.67	3997.68	40.81
PdTe ₂	x	e	0.35	0.32	1.44	-4.01	268.55	5.38
		h	0.16	0.12	1.44	-2.84	2924.89	26.97
	у	e	0.29	0.32	3.19	-4.55	545.75	9.21
		h	0.10	0.13	3.19	-3.34	7454.75	57.88

	result	a (Å)	<i>b</i> (Å)	$d_{ ext{Pd-S}}(ext{\AA})$	$d_{\text{S-S}}(\text{\AA})$	$E_{ m gp} ({ m eV})$
PdS ₂	Present	5.48	5.57	2.33,2.34	2.09	1.14(PBE), 2.12(HSE)
	Exp.	5.41	5.49	-	-	-
	Wang <i>et al</i> .	5.49	5.59	2.34,2.35	2.10	1.60(HSE)
	Deng et al.	5.50	5.59	-	-	1.00(PBE)
PdSe ₂	Present	5.74	5.91	2.45,2.46	2.41	1.34(PBE), 2.14(HSE)
	Exp.	5.74	5.86	-	-	-
	Deng et al.	5.49	5.94	-	-	1.31(PBE)
	Qin <i>et al</i> .	5.75	5.92	-	-	1.38(PBE)
	Oyedele <i>et al</i> .	5.72	5.93	-	-	-
PdTe ₂	Present	6.14	6.44	2.62,2.63	2.80	1.24(PBE),1.84(HSE)
	Deng et al.	5.99	6.37	-	-	-

Table S2. The optimized lattice parameters (*a*, *b*), length of Pd-S (d_{Pd-S}) and S-S (d_{S-S}) bonds, and band gap (E_{gp}) of the penta-PdX₂ (X = S, Se, Te) monolayers.

	directions	ZA	TA	LA	optical
DIC	x	13.57%	28.17%	45.03%	13.23%
PdS ₂	У	36.37%	12.47%	44.81%	6.35%
PdSe ₂	x	27.97%	33.22%	17.29%	21.52%
	У	40.30%	27.02%	20.97%	11.71%
PdTe ₂	x	27.74%	18.84%	35.10%	18.32%
	у	49.86%	19.13%	24.17%	6.84%

Table S3. Contribution rates of penta-Pd X_2 acoustical phonon branches (ZA, TA, LA) and optical phonons support to thermal conductance at 300 K.

Fig. S1 Snapshot of AIMD simulations at 300 K for (a) penta-PdS₂, (b) penta-PdSe₂, and (c) penta-PdTe₂ monolayers, respectively.

Fig. S2 HSE band structures with SOC for (a) penta-PdS₂, (b) penta-PdSe₂ and (c) penta-PdTe₂ monolayers, respectively.

Fig. S3 Total and partial density of states of (a) penta-PdS₂, (b) penta-PdSe₂ and (c) penta-PdTe₂ monolayers.

Fig.S4 Frequency-dependent group velocity of penta- PdX_2 (X = S, Se, Te) monolayers

along x (a) and y (b) direction.

Fig. S5 The electronic thermal conductivity (k_e) of penta-PdX₂ (X = S, Se, Te) monolayers for both *p*-type (a) and *n*-type (b) at 300 K along the *x* (solid lines) and y (dotted lines) directions.