Supporting Information

Room Temperature Production of Graphene Oxide with Thermally-labile Oxygen Functional Groups for Improved Lithium Ion Batteries Fabrication and Performance

Jiadong Qin[§], Yubai Zhang[§], Sean E. Lowe, Lixue Jiang, Han Yeu Ling, Ge Shi, Porun Liu, Shanqing Zhang, Yu Lin Zhong*, Huijun Zhao*

Centre for Clean Environment and Energy, School of Environment and Science, Griffith University Gold Coast Campus, Queensland 4222, Australia.

*Corresponding author: <u>y.zhong@griffith.edu.au</u>, <u>h.zhao@griffith.edu.au</u>

§ These authors contribute equally to this work.

Figure S1. The XRD curves for expandable graphite and natural graphite.

Figure S2. TGA curves of expandable graphite and natural graphite heated from 50 to 1000 $^{\circ}$ C at the rate of 5 K/min under pure argon atmosphere.

Figure S3. The Raman spectra of GO_{GIC} (a) at the temperature of 25 °C for different time, and (b) at different temperature for 4 h.

Figure S4. XPS survey spectra for different GO_{GIC} samples. The C/O ratios for GO_{GIC} -25-8h, GO_{GIC} -35-4h and GO_{GIC} -45-4h were 2.68, 3.05 and 2.41, respectively.

Figure S5. ATR-FTIR spectra for GO_{GIC} films which indicated the presence of C=O (the peak at ~1723 cm⁻¹), C-O (at 1400 and 1225 cm⁻¹) and -OH (3700-2700 cm⁻¹) in GO samples.^{1, 2}

LFP-GO_{GIC}-25-8h

LFP-carbon black

Figure S6. SEM images for GO_{GIC} modified LFP cathodes and unmodified LFP cathode.

Table S1. The residual weight percentage of GO_{GIC} after 6 h of thermal treatment at 150, 175 and 200 °C in 20% O₂/80% Ar atmosphere.

Annealing temperature	150 °C	175 °C	200 °C
GO _{GIC} -25-8h	69 %	66 %	65 %
GO _{GIC} -35-4h	77 %	73 %	70 %
GO _{GIC} -45-4h	72 %	65 %	61 %

Table S2. The atomic percentages of five components in the unreduced GO_{GIC} according to the fitted C1s XPS curves in Figure 4g-i.

	GO _{GIC} -25-8h	GO _{GIC} -35-4h	GO _{GIC} -45-4h
C=C/C-C	48.18%	56.53%	44.79%
C-0	44.43%	35.44%	45.61%
C=0	5.04%	4.81%	6.04%
соон	2.29%	2.81%	3.49%
π-π*	0.05%	0.41%	0.07%

Table S3. The atomic percentages of five components in the reduced GO_{GIC} after 5 h of 150 °C thermal annealing according to the fitted C1s XPS curves in **Figure 4j-I**.

	rGO _{GIC} -25-8h (150 °C, 5h)	rGO _{GIC} -35-4h (150 °C, 5h)	rGO _{GIC} -45-4h (150 °C, 5h)
C=C/C-C	72.56%	66.44%	63.83%
C-0	15.01%	20.00%	19.37%
C=0	5.93%	6.21%	9.10%
соон	4.34%	4.51%	4.95%
π-π*	2.16%	2.84%	1.97%

Table S4. Summary of various rGO modified LiFePO₄ cathodes. In the case of pre-reduced GO, GO was reduced first and then mixed with other active materials for the assembly of LIBs.

Surface treatment on LFP particles	Conductive additives	Specific Capacity at 0.1 C rate (mA·h·g ⁻¹)	High rate performanc e (mA·h·g ⁻¹)	Capacity Fading Per Cycle (%)	Ref.
No	rGO _{GIC} -25-8h	171 (at 0.1 C)	77 (at 10 C) 54 (at 20 C)	-0.11 (55 cycles at 2 C)	This work
No	rGO _{GIC} -45-4h	166 (at 0.1 C)	45 (at 10 C) 11 (at 20 C)	-0.09 (55 cycles at 2 C)	This work
No	No rGO, carbon black only	152 (at 0.1 C)	36 (at 10 C) 13 (at 20 C)	-0.18 (55 cycles at 2 C)	This work
No	Electrophoretic deposition of GO and LFP particles on carbon cloth followed by annealing at 700 °C	174.7	90 (at 10 C)	-0.0027 (400 cycles at 2 C)	[3]
No	Pre-reduced GO (reduced by hydrazine)	Not provided	87 (at 10 C) 69 (at 20 C)	Not provided	[4]
APS-modified LFP	Reduced GO (co-heated with LFP at 600 $^\circ\text{C}$ under Ar/H_2)	Not provided	105 (at 10 C) 70 (at 20 C)	-0.009 (950 cycles at 10 C)	[5]
Carbon coated LFP	Pre-reduced GO (reduced by hydrazine and annealed under N ₂ /H ₂)	152	107 (at 10 C)	0.167 (100 cycles at 0.1 C)	[6]
Hydrothermal synthesized LFP/rGO hybrids	rGO (co-heated with LFP at 700 °C)	166	75 (at 10 C) 60 (at 15 C)	-0.013 (100 cycles at 0.1 C)	[7]

References

- 1. A. M. Dimiev, L. B. Alemany and J. M. Tour, ACS Nano, 2013, 7, 576-588.
- 2. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano, 2010, 4, 4806-4814.
- 3. Y. Huang, H. Liu, Y.-C. Lu, Y. Hou and Q. Li, J. Power Sources, 2015, 284, 236-244.
- 4. H. Bi, F. Huang, Y. Tang, Z. Liu, T. Lin, J. Chen and W. Zhao, *Electrochimica Acta*, 2013, **88**, 414-420.
- 5. W.-B. Luo, S.-L. Chou, Y.-C. Zhai and H.-K. Liu, *Journal of Materials Chemistry A*, 2014, **2**, 4927-4931.
- 6. M. Lin, Y. Chen, B. Chen, X. Wu, K. Kam, W. Lu, H. L. W. Chan and J. Yuan, ACS Applied Materials & Interfaces, 2014, **6**, 17556-17563.
- 7. J. Yang, J. Wang, Y. Tang, D. Wang, X. Li, Y. Hu, R. Li, G. Liang, T.-K. Sham and X. Sun, *Energy Environ. Sci.*, 2013, **6**, 1521-1528.