Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Aqueous Solution Synthesis of Na₃SbS₄-Na₂WS₄ Superionic Conductors

So Yubuchi, Akane Ito, Naoki Masuzawa, Atsushi Sakuda, Akitoshi Hayashi*,

and Masahiro Tatsumisago

Department of Applied Chemistry, Graduate School of Engineering,

Osaka Prefecture University,

1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

*Correspondence to: hayashi@chem.osakafu-u.ac.jp

Fig. S1 Amounts of H_2S gas as a function of time for the Na₂S solid powder and Na₂S aqueous solution, normalised by sulfur in the samples. The humidity during measurement for Na₂S solid powder was 50%. The concentration and pH of Na₂S aqueous solution were 10 wt.% and 13.7, respectively.

Fig. S2 Photographic images of the precursor aqueous solutions of (a) Na_3SbS_4 and (b) Na_2WS_4 .

(a)

Wavenumber / cm⁻¹

Fig. S3 (a) Photographic image of the decomposition product prepared by adding HCl into the precursor aqueous solution of Na_3SbS_4 and subsequent drying at 150 °C. (b) Raman spectra of the decomposition product, Na_3SbS_4 , Sb_2S_3 , and sulfur.

Outermost surface 1 nm 5 nm

Fig. S4 (a) C_{1s} , (b) S_{2p} , (c) Na_{1s} , and (d) O_{1S} and Sb_{3d} photoelectron spectra of the Na_3SbS_4 prepared by a liquid-phase technique with drying at 150 °C. The observed binding energies were calibrated with respect to adventitious C1s peak at 284.7 eV. The peaks of SbS_4 were broadened during etching.

Fig. S5 Rietveld refinement profiles of X-ray powder diffraction data for Na_3SbS_4 prepared by a liquid-phase technique with drying at 150 °C recorded at room temperature. Red dots and light blue line denote the observed and calculated XRD patterns, respectively. The green sticks mark the position of the reflections for Na_3SbS_4 . The difference between the observed and calculated patterns is signified by the blue line.

Fig. S6 Crystal structures of Na_3SbS_4 viewed along the (a) a-axis and (b) c-axis with the unit cell outlined. The Na, Sb, and S sites are represented by green, orange, and yellow balls, respectively.

(b)

Fig. S7 FE-SEM images of Na_3SbS_4 prepared by (a) a liquid-phase technique with drying at 150 °C and (b) a mechanochemical technique.

Fig. S8 Raman spectrum of the precursor aqueous solution of Na_2WS_4 .

Fig. S9 XRD patters of Na_2WS_4 prepared by a liquid-phase technique with drying at 150 °C, $(NH_4)_2WS_4$, and Na_2WS_4 (JCPDS no. 00-041-1148).

Fig. S10 Amounts of H_2S gas as a function of time from Na_3SbS_4 and $Na_{2.88}Sb_{0.88}W_{0.12}S_4$ solid powders, normalised by sulfur in the samples. The humidity and room temperature during measurement were 68-74% and 23-25 °C, respectively.

Fig. S11 Nyquist plots at -25.3 and -25.9 °C of $Na_{2.88}Sb_{0.88}W_{0.12}S_4$ before (\Box) and after (O) an annealing process at 100 °C, respectively

Fig. S12 Current as a function of time of $Na_{2.88}Sb_{0.88}Sb_{0.12}S_4$ green compact prepared by cold-pressing at 720 MPa and subsequent annealing at 100 °C. The measurement was conducted by a DC polarisation technique to estimate the electronic conductivity at 25 °C. The applied voltage was ca. 0.3 V.

Fig. S13 Meyer-Neldel plots for sulfide-based lithium-ion and sodium-ion conductors reported previously.^{17, 23, 26, 43} The plots were prepared with reference to Ref. 23. The dash line indicates the conductivity threshold of 1 mS cm⁻¹. The activation energy and the preexponential factor of $Na_{2.88}Sb_{0.88}W_{0.12}S_4$ were 0.248 eV and 6.05 S cm⁻¹, respectively.

Fig. S14 Crystal structure of $Na_{2.88}Sb_{0.88}W_{0.12}S_4$ with the unit cell outlined. The Na, Sb, W, and S sites are represented by green, orange, grey, and yellow balls, respectively.

Table S1 Chemical composition of Na₃SbS₄ prepared by a liquid-phase technique with drying at 150 °C. The values were determined by the RBS and ICP-AES measurements.

Analysis technique	Na / atomic%	Sb / atomic%	S / atomic%	Na / Sb	S / Sb
RBS	37.6	12.4	50.0	3.03	4.03
ICP-AES	75.0	25.0	N/A	3.01	N/A

*RBS: Rutherford backscattering spectrometry, ICP-AES: Inductively coupled plasm atomic emission spectroscopy

Table S2 Crystallographic data for Na₃SbS₄ prepared by a liquid-phase technique with drying at 150 °C.

Crystal systemTetragonalSpace group $P\overline{4}2_1c$ (no. 114)		onal (no. 114)	Lattice parameter Volume	$a = b = 7.1633(3)$ Å, $c = 7.2821(4)$ Å, $\alpha = \beta = \gamma = 90^{\circ}$ V = 373.665442 Å ³ , $Z = 2$		
Atom	Wyckoff site	g	X	y	Ζ.	U / Ų
Na1	4 <i>d</i>	1.0	0	1/2	0.4353(5)	0.0431
Na2	2 <i>b</i>	1.0	0	0	1/2	0.066
Sb	2a	1.0	0	0	0	0.0144
S	8 <i>e</i>	1.0	0.2995(4)	0.3268(4)	0.6842(3)	0.0232

 $*R_{wp} = 3.57, R_e = 1.71, R_P = 2.76, S = R_{wp}/R_e = 2.0882$

Table S3 Crystallographic data for $Na_{2.88}Sb_{0.88}W_{0.12}S_4$ prepared by a liquid-phase technique with heat treatment at 275 °C.

Crystal system	Tetragonal	Lattice parameter	$a = b = 7.1664(2)$ Å, $c = 7.257(3)$ Å, $\alpha = \beta = \gamma = 90^{\circ}$
Space group	$P\overline{4}2_1c$ (no. 114)	Volume	$V = 372.70 \text{ Å}^3, Z = 2$

X

Atom Wyckoff site

8

у

 \mathcal{Z}

U / Å 2

Na1	4 <i>d</i>	1.0	0	1/2	0.4394(7)	0.057
Na2	2b	0.88	0	0	1/2	0.05
Sb	2a	0.88	0	0	0	0.0171
W	2a	0.12	0	0	0	= U(Sb)
S	8 <i>e</i>	1.0	0.3031(5)	0.3263(5)	0.6855(3)	0.0245

 $*R_{wp} = 3.20, R_e = 1.73, R_P = 2.41, S = R_{wp}/R_e = 1.85$