Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A novel highly Crystalline Fe₄(Fe(CN)₆)₃ Concave Cube Anode Material for Li-Ion Batteries with High Capacity and Long Life

Xiaowei He, Lidong Tian, Mingtao Qiao, Jianzheng Zhang, Wangchang Geng*, Qiuyu Zhang*

Dr. X.-W. He, L.-D. Tian, M.-T. Qiao, J.-Z. Zhang, Prof. W.-C. Geng, Q.-Z. Zhang Department of Applied Chemistry, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University Youyi Road 127#, Xi'an 710072, P. R. China Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, PR China

E-mail: w.geng@nwpu.edu.cn, qyzhang@nwpu.edu.cn

Figure. S1 EDX mapping images of PB microfames

Element	Mass percent (wt%)	Atomic percent (%)		
С	18.16	37.33		
Ν	15.27	26.92		
0	2.97	4.59		
Na	0.19	0.20		
K	15.47	9.77		
Fe	47.95	21.20		
Total:	100.00	100.00		

 Table S1. Element content by EDX

Table S2. Elemental contents by Elemental analysis during different test

	N (wt%)	C (wt%)	H (wt%)	N:C (molar ratio)
	29.420	22.800	1.482	1.106
	29.470	21.990	1.319	1.149
	28.570	21.130	1.157	1.159
	26.880	19.580	1.200	1.177
Average	28.585	21.375	1.290	1.146

Table S3. Elemental contents of FeFe(CN)6 sample (weight percentage) by ICP-AES,Elemental analysis and TGA

weight percentage	K	Na	Fe	С	N	H ₂ O
	K	INA	ΤU	U	11	1120
	13.087	0.1	34.376	21.375	28.585	2.477

Figure. S2 XRD characterization of the ball milled PB microfames

Figure. S3 The morphology of PB material with different additive: (a) without any additive, (b) sodium chloride, (c) sodium bromide and (d) sodium iodide. The bars of the mages are 20 μm.

Figure. S4 The morphology of PB material with different hydrothermal time: (a) 1 hour, (b) 2 hours, (c) 3 hours and (d) 12 hours. The bars of the mages are 20 μm.

Figure. S5 The morphology of PB cube. The scales in (a) and (b) are 50 and 10 μ m, respectively.

Figure S6. XRD patterns of PB cubes.

Figure. S7 The morphology of PB microframes after cycling at a current density of 100 mA g⁻¹ for 100 cycles.

Figure. S8 The morphological and crystal features of PB microframes after cycling at a current density of 100 mA·g⁻¹ for 100 cycles: TEM image (a), HR-TEM image of acetylene black (b); the SAED patterns (c), HR-TEM image of PB microframes (d)

Figure S9. Discharge–charge curves (a) and cyclic performance (b) for the PB microframes-LiCoO₂ full-cell at 200 mA \cdot g⁻¹ between 1.5 and 4.2 V

Figure S10. FTIR spectrum of PB cubes.

Figure S11. TGA curves of PB microframes and PB cubes. The TGA test was conducted at a heating rate of 10 °C min⁻¹ under O₂ flow