Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Two–Dimensional π –Conjugated Metal Bis(Dithiolene) Nanosheets as Promising

Electrocatalysts for Carbon Dioxide Reduction: A Computational Study

Yu Tian,^a Changyan Zhu,^a Likai Yan,^{a*} Jingxiang Zhao,^{b*} and Zhongmin Su^a

^a Institute of Functional Materials Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.

^b College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.

* To whom correspondence should be addressed. *E*-mail: yanlk924@nenu.edu.cn (L. K.); xjz_hmily@163.com (J. -X. Zhao).

	lattice constant (Å)	M–S distance (Å)	Q (e)	$M_M(\mu_B)$	$M_{tot} \left(\mu_B \right)$	$E_{\rm coh}/{\rm eV}$
$Fe_{3}C_{12}S_{12}$	14.80	2.19	0.70	2.16	5.86	-5.25
$Co_{3}C_{12}S_{12}$	14.76	2.17	0.58	0.98	2.90	-5.19
$Ni_3C_{12}S_{12}$	14.62	2.15	0.51	0.00	0.00	-5.24
$Ru_3C_{12}S_{12}$	15.19	2.29	0.55	1.49	4.84	-5.31
$Rh_3C_{12}S_{12}$	15.07	2.27	0.36	0.26	1.03	-5.28
$Pd_{3}C_{12}S_{12}$	15.05	2.30	0.30	0.00	0.00	-5.07

Table S1. The geometric parameters, charge $(Q)^a$ of per M atom, magnetic moment of per M atom $(M_M)^a$ and total moment of $M_3C_{12}S_{12} (M_{tot})^a$.

^aThe Bader charge and magnetic momentum are calculated by VASP program.

	Elementary Step	$\Delta G/\mathrm{eV}$
Ru ₃ C ₁₂ S ₁₂	$\mathrm{CO}^* \rightarrow \mathrm{CO} + *$	1.78
$Ru_{3}C_{12}S_{12}$	$\mathrm{CO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{CHO}^*$	1.08
$Rh_3C_{12}S_{12}$	$\mathrm{CO}^* \rightarrow \mathrm{CO} + *$	0.99
$Rh_3C_{12}S_{12}$	$\mathrm{CO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{CHO}^*$	0.43
$Rh_3C_{12}S_{12}$	$\mathrm{CO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{COH}^*$	1.82
$Rh_3C_{12}S_{12}$	$\mathrm{CHOH}^* + \mathrm{H}^+ + \mathrm{e}^- \to \mathrm{CH}^* + \mathrm{H}_2\mathrm{O}$	0.88
Rh ₃ C ₁₂ S ₁₂	$\mathrm{CHO}^* + \mathrm{H}^+ + \mathrm{e}^- \! \rightarrow \mathrm{H}_2\mathrm{CO}^*$	0.64

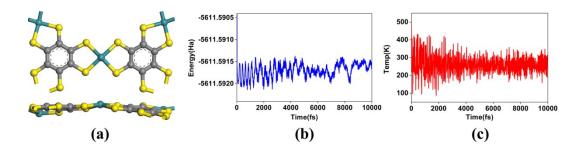

Table S2. The computed free energies (ΔG) of CO₂RR species on Ru₃C₁₂S₁₂ and Rh₃C₁₂S₁₂ sheets.

Table S3. Chemical process and transition state imaginary vibrational frequency foreach elementary step on $Rh_3C_{12}S_{12}$.

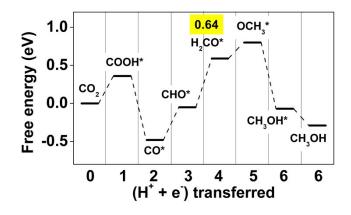
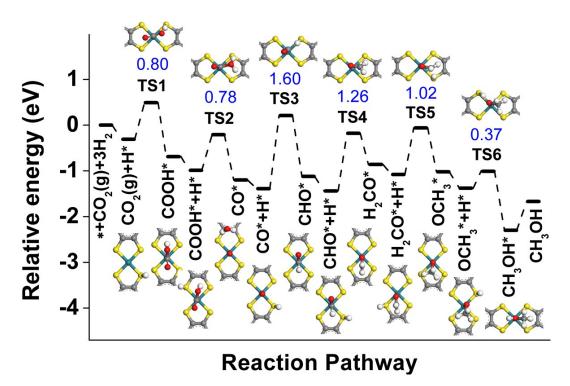

Elementary Step	Chemical process	TS <i>Vib</i> . (cm ⁻¹)	
$\rm CO_2 + H^* \rightarrow \rm COOH^*$	O–H bond formation	<i>i</i> 894.18	
$COOU^* + U^* \rightarrow CO^* + U O$	C-OH bond dissociation	: 1150 (5	
$\rm COOH^* + H^* \rightarrow \rm CO^* + \rm H_2O$	with O–H bond formation	i 1150.65	
$\rm CO^* + H^* \rightarrow CHO^*$	C–H bond formation	i 1687.28	
$\mathrm{CHO}^* + \mathrm{H}^* \to \mathrm{CHOH}^*$	O–H bond formation	<i>i</i> 1381.83	
$\rm CHO^* + H^* \rightarrow \rm H_2\rm CO^*$	C–H bond formation	i 273.15	
$\mathrm{CHOH}^* + \mathrm{H}^* \to \mathrm{CH}_2\mathrm{OH}^*$	C–H bond formation	i 1568.20	
$\mathrm{H_2CO}^* + \mathrm{H}^* \rightarrow \mathrm{OCH_3}^*$	C–H bond formation	i 1418.47	
$CH_2OH^* + H^* \rightarrow CH_2^*(bri) + H_2O$	C-OH bond dissociation	i 355.33	
$CH_2OH + H \rightarrow CH_2 (OH) + H_2O$	with O–H bond formation		
$\operatorname{CH}_2^*(\operatorname{bri}) + \operatorname{H}^* \to \operatorname{CH}_2^*(\operatorname{top})$	C-S bond dissociation	<i>i</i> 216.88	
$\mathrm{OCH_3}^* + \mathrm{H}^* \to \mathrm{CH_3OH}^*$	C–H bond formation	<i>i</i> 1352.04	
$\mathrm{CH_2}^* + \mathrm{H}^* \to \mathrm{CH_3}^*$	C–H bond formation	i 1312.34	
$\mathrm{CH_3}^* + \mathrm{H}^* \longrightarrow \mathrm{CH_4} + *$	C–H bond formation	i 1039.79	

Table S4. Chemical process and transition state imaginary vibrational frequency ofwater-assisted CHO* formation on $Rh_3C_{12}S_{12}$.


Elementary Step	Model	Chemical process	TS <i>Vib.</i> (cm ⁻¹)	
$\rm CO^* + H^* \rightarrow CHO^*$	H-shuttling	C–H bond formation	i 773.03	
$\rm CO^* + H^* \rightarrow \rm CHO^*$	water-solvated	C–H bond formation	i 1678.86	

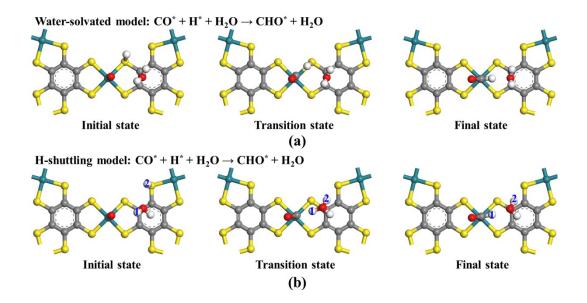

Figure S1. (a) Geometry snapshot, variation of (b) total energy and (c) temperature of $Ru_3C_{12}S_{12}$ at 10 ps during MD simulation at 500 K.

Figure S2 Free energy profiles for reduction CO₂ to CH₃OH formation on Rh₃C₁₂S₁₂. The pathway is shown at the indicated potential of 0 V vs RHE. The free energy zero is set as that of the catalyst and the isolated CO₂ molecule. The maximum ΔG of the whole pathway is highlighted in yellow.

Figure S3 Potential energy profiles for reduction CO_2 to CH_3OH on $Rh_3C_{12}S_{12}$. The total energy of the catalyst, isolated CO_2 , and three H_2 are taken as zero for reference. Color code: Rh, green; S, yellow; C, gray; O, red; H, white.

Figure S4 The structures of the initial, transition, and final states for reduction CO^{*} to CHO^* on $Rh_3C_{12}S_{12}$ with 1 H₂O in the (a) water–solvated, and (b) H–shuttling models.

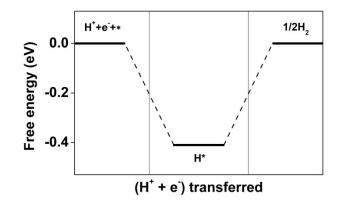


Figure S5. The energy diagram of the HER on $Rh_3C_{12}S_{12}$.