Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Fabrication of strong internal electric field ZnS/Fe₉S₁₀ heterostructure for highly efficient sodium ion storage

Chengzhi Zhang,^{a,b} Fei Han,^{*a,b} Jianmin Ma,^d Zheng Li,^{a,b} Fuquan Zhang,^{a,b} Shaohua Xu,^{a,b} Hongbo Liu,^{a,b} Xuanke Li,^{a,b} Jinshui Liu^{*a,b} and An-Hui Lu^{*c}

 ^a College of Materials Science and Engineering, Hunan University, Changsha 410082, China
 ^b Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, China
 ^c State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
 ^d School of Physics and Electronics, Hunan University, Changsha 410082, China

Fig. S1. (a) A summary of the energy bandgaps of common anode materials. (b) The simulated Gibbs free energy changes of Fe_9S_{10} and ZnS active species reacting with sodium. (c) Schematic illustration of the proposed synthetic strategy of ZnS/Fe₉S₁₀@C.

Fig. S2. SEM images of (a) ZnS/Fe₉S₁₀@C, (b) ZnS@C and (c) Fe₉S₁₀@C. (d) EDS spectrum, (e, f) TEM images of ZnS/Fe₉S₁₀@C.

Fig. S3. Thermogravimetric curves of $ZnS/Fe_9S_{10}@C$ thermally treated in air. The chemical processes occurred during the TG test were directly displayed in this figure.

Sample	ZnS/Fe ₉ S ₁₀ @C	ZnS@C	Fe ₉ S ₁₀ @C	Mixed ZnS@C- Fe ₉ S ₁₀ @C	ZnO/Fe ₂ O ₃ @C	ZnO @C	Fe ₂ O ₃ @C
Powder conductivity (S cm ⁻¹)	6.57×10^{-2}	$8.1 imes 10^{-8}$	10.1	3.02×10^{-3}	3.51×10^{-5}	8.67 × 10 ⁻⁵	2.67×10^{-3}

Table S1. A summary of powder electronic conductivity of different samples in this study.

Fig. S4. (a) N₂ sorption isotherm and (b) pore size distribution of $ZnS/Fe_9S_{10}@C$.

Fig. S5. Wide-angle XRD patterns of Fe₂O₃@C, ZnO@C and ZnO/Fe₂O₃@C.

Fig. S6. The high-resolution XPS spectra of C 1s and N 1s of ZnS/Fe₉S₁₀@C.

Fig. S7. The typical CV curves of ZnS@C, Fe₉S₁₀@C and ZnS/Fe₉S₁₀@C.

Fig. S8. XRD pattern of the $ZnS/Fe_9S_{10}@C$ electrode under the full sodiation condition.

Materials	Volumetric capacity (mAh cm ⁻³)	Current density (A g ⁻¹)	Mass loading (mg cm ⁻²)	Density (g cm ⁻³)	Ref.
ZnS/Fe9S10@C	1030/670/386	0.5/10/50	1.5	1.62	This work
Bi ₂ Se ₃ /GNS	379	10	1.13	2.07	1
SnTe/C	430	0.96	2.02	2.01	2
Amorphous MoS ₃	1011/635/171	1/10/50	2.8	1.9	3
SnS ₂ -RGONRP	334/255	1/5	0.78	0.94	4
Nitrogen-Rich Graphene	780/118	0.02/10	1.5	1.5	5

Table S2. Comparison of the volumetric capacity with recently reported anode materials for

 Na-ion batteries.

Fig. S9. Half-cell capacities with different loading amounts of ZnS/Fe₉S₁₀@C

Fig. S10. Cycle performance of pure carbon at a current density of 500 mA g^{-1} . The sample was obtained by etching ZnS/Fe₉S₁₀@C in 1 M HCl solution.

Fig. S11. (a) Galvanostatic discharge/charge profiles and (b) cycle performance of $ZnO/Fe_3O_4@C$ at a current density of 500 mA g⁻¹.

Fig. S12. (a) SEM image of ZnS/Fe₉S₁₀@C with a ZnS/Fe₉S₁₀ ratio of 1:1, (b) a comparison of cycle performance of ZnS/Fe₉S₁₀@C with different ZnS/Fe₉S₁₀ ratios at 500 mA g^{-1} .

Table S3. Comparison of electrochemical data of $ZnS/Fe_9S_{10}@C$ in this work with previously reported materials zinc sulfide-based, iron sulfide-based and their typical heterogeneous anodes for sodium ion batteries.

	Cut-off voltage (V)	Cycling stability				Rate capability		
Sample		Current density (A g ⁻¹)	Initial discapacity (mA h g ⁻¹)	Cycle number	Capacity retention (mA h g ⁻¹)	Current density (A g ⁻¹)	Capacity retention (mA h g ⁻¹)	Ref.
ZnS/Fe ₉ S ₁₀ @C	0.005-3	1.0	688	200	485	50	229	This
								work
Fe_3S_4	0.5-3	0.2	571	100	536	40	233	6
FeS ₂ @FeSe ₂ core- shell	0.5-2.9	5.0	_	3850	301	10.0	203	7
Porous FeS nanofibers	0.001-3	0.5	561	150	592	5.0	353	8
Fe ₇ S ₈ @C NCs	0.08-3	0.18	-	1000	447	2.7	552	9
ZnS-Sb ₂ S ₃ @C Core- Double Shell	0.01-1.8	0.1	_	120	630	0.8	391	10
FeS2@C yolk-shell	0.1-2	2.0	_	800	330	5.0	403	11
Sb/ZnS@C	0.1-1.8	0.1	_	150	555	1.6	214	12
ZnS/NPC	0.005-3	1	-	1000	456	4.0	182	13
MoS ₂ /G	0.01-2.7	0.1	_	100	432	50	201	14
RGO/SnS2@C	0.005-3	0.1	691	100	605	3.2	462	15
Fe _{1-x} S@CNTS	0.01-2.3	0.5	638	200	449	8	326	16
MoS ₂ @C-CMC	0.01-3	0.08	556	100	286	1	205	17
Ce-V ₅ S ₈ -C	0.01-3	1	_	500	496	10	344	18

Fig. S13. Equivalent electrical circuit for fitting electrochemical impedance data.

Fig. S14. Typical galvanostatic discharge/charge profiles of ZnS/Fe₉S₁₀@C at different current densities.

Fig. S15. Rate capability of ZnS@C and Fe₉S₁₀@C with increasing densities from 0.2 to 5.0 A g^{-1} .

Sample	200 mA g ⁻¹	500 mA g ⁻¹	1000 mA g ⁻¹	2000 mA g ⁻¹	5000 mA g ⁻¹
ZnS@C	412 mAh g ⁻¹	371 mAh g ⁻¹	340 mAh g ⁻¹	300 mAh g ⁻¹	228 mAh g ⁻¹
Fe ₉ S ₁₀ @C	302 mAh g ⁻¹	277 mAh g ⁻¹	228 mAh g ⁻¹	200 mAh g ⁻¹	156 mAh g ⁻¹

Fig. S16. (a, c) CV curves at different scan rates, and (b, d) current response vs. the scan rate for determining the *b* value of ZnS@C and Fe₉S₁₀@C.

Calculation of the ion diffusion coefficient in samples

The diffusion coefficient of Na⁺ can be calculated from the plots in the low frequency region using the following equation:¹⁹

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$

Where *R* is the gas constant (8.314 $Jmol^{-1}K^{-1}$), *T* is the absolute temperature (298.15 *K*), *A* is the surface area of the cathode (1.76 cm^2), *n* is the number of electrons per molecule during oxidization (9.6486×10⁴ $Cmol^{-1}$), *F* is the Faraday constant (96, 486 $C mol^{-1}$), *C* is the

concentration of Na⁺ (8.46×10⁻² mol cm⁻³), and σ is the Warburg factor which obeys the following relationship:

$$Z_{real} = R_e + R_{ct} + \sigma \omega^{-1/2}$$

Where R_e is the resistance between the electrolyte and electrode, and R_{ct} is the charge transfer resistance, ω is angle frequency.

Note: The concentration of Na⁺ is calculated according to the complete sodiation reactions of Fe_9S_{10} and ZnS active materials. Considering to the molar ratio of Fe_9S_{10}/ZnS and their respective unit cell volume, the concentration of Na⁺ is computed as follows:

 $C = Q_{Na} / N_A (V_{Fe9S10} + 3V_{ZnS} + 26.2V_{Na})$

Where Q_{Na} is total quantity of Na⁺, N_A is Avogadro constant 6.02×10²³, V_{Fe9S10} , V_{ZnS} , V_{Na} represent the unit cell volumes of Fe₉S₁₀, ZnS and Na⁺.

Table S4. Kinetic parameters derived from the Nyquist plots of the ZnS@C, $Fe_9S_{10}@C$ and $ZnS/Fe_9S_{10}@C$ after 100 cycles.

	ZnS@C	Fe ₉ S ₁₀ @C	ZnS/Fe ₉ S ₁₀ @C
Warburg factor (σ)	204	294	72
$C \pmod{\mathrm{cm}^{-3}}$	7.32×10 ⁻²	8.89×10 ⁻²	8.46×10 ⁻²
Diffusion coefficient $(D) (\text{cm}^2 \text{ s}^{-1})$	5.65×10 ⁻¹⁵	1.87×10 ⁻¹⁵	3.38×10 ⁻¹⁴

Fig. S17. (a,b) SEM images of $ZnS/Fe_9S_{10}@C$ after 50 cycles under the full discharge condition, and (c) its corresponding elemental mappings and (d) EDS spectrum.

Fig. S18. (a,b) TEM images of $ZnS/Fe_9S_{10}@C$ after 50 cycles under the full charge condition.

Fig. S19. Cycle performance of ZnO/SnO₂@C at a current density of 500 mA g⁻¹.

References

- 1 D. Li, J. Zhou, X. Chen and H. Song, ACS Appl. Mater. Interfaces, 2018, 10, 30379-30387.
- 2 A. R. Park and C. M. Park, ACS Nano, 2017, 11, 6074-6084.
- 3 H. Ye, W. Lu, S. Deng, X. Zeng and J. Lu, Adv. Energy Mater., 2016, 7, 1601602.
- 4 Y. Liu, Y. Yang, X. Wang, Y. Dong, Y. Tang, Z. Yu, Z. Zhao and J. Qiu, *ACS Appl. Mater. Interfaces*, 2017, 9, 15484-15491.
- 5 Z. Liu, L. H. Zhang, L. Z. Sheng, Q. H. Zhou, T. Wei, J. Feng and Z. J. Fan, *Adv. Energy Mater.*, 2018, 8, 1802042.
- 6 Q. Li, Q. Wei, W. Zuo, L. Huang, W. Luo, Q. An, V. O. Pelenovich, L. Q. Mai and Q. Zhang, *Chem. Sci.*, 2017, 8, 160-164.
- 7 W. Zhao, C. Guo and C. Li, J. Mater. Chem. A, 2017, 5, 19195-19202.
- 8 J. Cho, J. Park and Y. Kang, Nano Res., 2017, 10, 897-907.
- 9 M. Choi, J. Kim, J. Yoo, S. Yim, J. Jeon and Y. Jung, *Small*, 2018, 14, 1702816.
- 10 S. Dong, C. Li, X. Ge, Z. Li, X. Miao and L. Yin, ACS Nano, 2017, 11, 6474-6482.
- Z. Liu, T. Lu, T. Song, X. Yu, X. Lou and U. Paik, *Energy Environ. Sci.*, 2017, 10, 1576-1580.
- 12 S. Dong, C. Li, Z. Li, L. Zhang and L. Yin, *Small*, 2018, 14, 1704517.
- 13 J. Li, D. Yan, X. Zhang, S. Hou, T. Lu, Y. Yao and L. Pan, J. Mater. Chem. A, 2017, 5, 20428-20438.
- 14 D. Sun, D. Ye, P. Liu, Y. Tang, J. Guo, L. Wang and H. Wang, *Adv. Energy Mater.*, 2018, 8, 1702383.
- 15 B. Luo, Y. Hu, X. Zhu, T. Qiu, L. Zhi, M. Xiao, H. Zhang, M. Zou, A. Cao and L. Wang,

J. Mater. Chem. A, 2018, 6, 1462-1472.

- 16 Y. Xiao, J. Hwang, I. Belharouak and Y. Sun, ACS Energy Lett., 2017, 2, 364-372.
- 17 X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi and G. Wang, *Adv. Energy Mater.*, 2016, 6, 1502161.
- 18 C. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. Liu and K. V. Huang, *Energy Environ. Sci.*, 2017, 10, 107-113.
- 19 X. Du, W. He, X. Zhang, Y. Yue, H. Liu, X. Zhang, D. Min, X. Ge and Y. Du, J. Mater. Chem., 2012, 22, 5960-5969.