Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

## Supplementary materials:

## *In situ* formation of LiF decoration on Li-rich material for long-cycle life and superb low-temperature performance

Xiang Ding<sup>a</sup>, Yi-Xuan Li<sup>a</sup>, Fei Chen<sup>a</sup>, Xiao-Dong He<sup>a</sup>, Aqsa Yasmin<sup>a</sup>, Qiao Hu<sup>a</sup>, Zhao-Yin Wen<sup>b</sup>

and Chun-Hua Chen<sup>a,\*</sup>

<sup>a</sup>CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and

Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology,

University of Science and Technology of China, Anhui Hefei 230026, China

<sup>b</sup>Key Laboratory of Energy Conversion Laboratory, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China



Fig. S1 SEM images of (a) LLO, (b) 0.5@LLO, (c) 1@LLO, (d) 2@LLO, (e) LiF@LLO and (f, g, h, i, j, k, l) the EDS mapping images of Mn, Co, Ni, O, F and P elements for 0.5@LLO, respectively.



Fig. S2 TEM image of 2@LLO.



Fig. S3 CV curves of (a) LLO and (b) 0.5@LLO in half-cells during 2.0-4.8 V at a scan rate of

0.01 mV s<sup>-1</sup>.



Fig. S4 The charge-discharge curves of (a) LLO, (b) 0.5@LLO and (c) LiF@LLO during 100 cycles at 0.5 C.



Fig. S5 TEM images of 0.5@LLO after 100 cycles at 0.5 C.



**Fig. S6** CV curves of (a) LLO and (b) 0.5@LLO at selected scan rate from 0.1 to 1.0 mV s<sup>-1</sup>. The peak current Ip as a function of square of scan rate v for these two samples: the linear fit of (c) oxidation peak and (d) reduction peak.

| Samples                                                              | Synthesis | Coating material | Capacity (mA h g <sup>-1</sup> ) | Ref. |
|----------------------------------------------------------------------|-----------|------------------|----------------------------------|------|
|                                                                      | method    |                  | at -30 °C and retention          |      |
| Li <sub>1.2</sub> Ni <sub>0.2</sub> Mn <sub>0.6</sub> O <sub>2</sub> | sol-gel   | 3wt% Li2O-2B2O   | 87.6/288@30.4%                   | 1    |
| $Li_{1,2}Ni_{0,13}Co_{0,13}Mn_{0,54}O_2$                             | sol-gel   | 0.085 wt% LiF    | 112/280@40.0%                    | This |
|                                                                      |           |                  |                                  | work |

Table S1 A comparison of electrochemical performance at -30 °C.

Table S2 The values of  $I_{(003)}/I_{(104)}$  of LLO, 0.5@LLO and LiF@LLO before and after cycle.

| Samples                  | value of $I_{(003)} / I_{(104)}$ |  |
|--------------------------|----------------------------------|--|
| pristine LLO             | 1.17                             |  |
| LLO after 100 cycles     | 0.84                             |  |
| LiF@LLO after 100 cycles | 0.96                             |  |
| 0.5@LLO after 100 cycles | 1.02                             |  |

**Table S3** The values of  $R_s$  of all the samples after 3 and 100 cycles.

| Samples | $R_s(\Omega)/3$ cycles | $R_s(\Omega)/100$ cycles |
|---------|------------------------|--------------------------|
| LLO     | 86                     | 436                      |
| 0.5@LLO | 30                     | 80                       |
| 1@LLO   | 40                     | 115                      |
| 2@LLO   | 38                     | 118                      |
| LiF@LLO | 40                     | 244                      |

## References

1 S. Chen, L. Chen, Y. Li, Y. Su, Y. Lu, L. Bao, J. Wang, M. Wang, F. Wu, ACS Appl. Mater. Interfaces 9 (2017)

8641-8648.