Single-crystalline Melem (C₆N₁₀H₆) Nanorods: A Novel Stable

Molecular Crystal Photocatalyst with Modulated Charge Potentials

and Dynamics

Renbo Lei^a, Bingsheng Du^a, Xiaofang Lai^a, Jing Wu^a, Zhihua Zhang^b, Shengwei Liu^{c,*}, Rong Wu^d, Xin Li^e, Bo Song^{f,*} and Jikang Jian^{a,*}

^a School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China ^b Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiao tong University, Dalian 116028, P. R. China

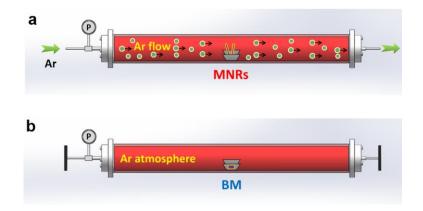
^c School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China

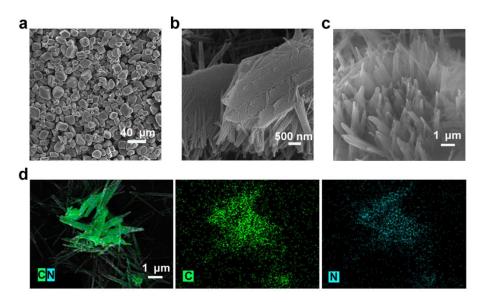
^d Key Laboratory of Solid-state Physics and Devices, School of Physical Science and Technology, Xinjiang University, Urumqi 830046, P. R. China

^e College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture,South China Agricultural University, Guangzhou 510642, P. R. China

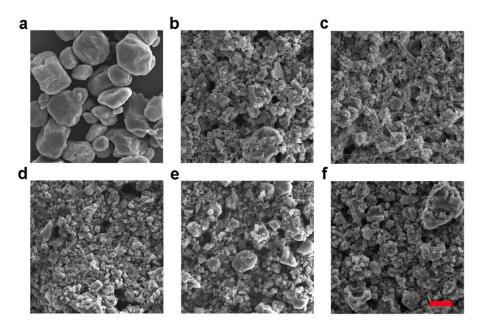
^f National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China

*E-mail addresses: liushw6@mail.sysu.edu.cn (S. Liu); songbo@hit.edu.cn (B. Song); jianjikang@gdut.edu.cn (J. Jian)




Fig. S1 Schematic illustrations of synthetic routes for (a) MNRs and (b) BM.

Formula	H6N7(NH2)3			
Space group	p21/c (no. 14)			
HKL	DOBS	DCAL	2TH.OBS	2TH.CAL
	(Å)	(Å)	(degree)	(degree)
100	7.3255	7.2887	12.072	12.133
011	7.1393	7.2336	12.388	12.226
002	6.6873	6.5909	13.229	13.423
-1 0 2	5.3481	5.3701	16.562	16.494
111	4.8459	4.9077	18.292	18.061
-1 1 2	4.5415	4.5628	19.53	19.439
112	4.0373	4.0043	21.998	22.182
120	3.738	3.7204	23.784	23.899
121	3.5343	3.501	25.177	25.421
-2 -1 1	3.4049	3.3857	26.15	26.302
004	3.2821	3.2955	27.147	27.035
113	3.2361	3.2491	27.54	27.428
-114	3.0035	3.0161	29.72	29.594
-1 2 3	2.9353	2.971	30.427	30.054
104	2.8533	2.8257	31.324	31.638
123	2.716	2.7237	32.952	32.856
-1 -3 1	2.6684	2.6612	33.557	33.65
131	2.5941	2.5962	34.547	34.52
124	2.3631	2.3658	38.048	38.003


Table S1 Observed and calculated distances of crystalline planes of melem nanorods(MNRs). The calculation is based on the CIF file of melem reported in Ref .1.

(* 2Theta < 40°)

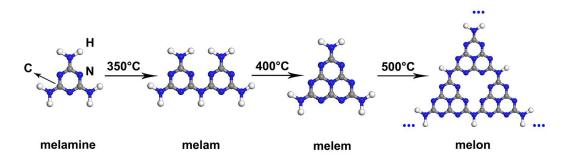

Fig. S2a and **S3**e show the SEM images of melamine and g-C₃N₄ synthesized at 550 °C for 2 h, respectively. **Fig. S3** also shows the SEM images of carbon nitride samples obtained at different temperatures. When the raw materials were annealed at 300 °C, massive crystals were obtained. **Fig. S3**a shows that melamine could be stable under 300 °C. **Fig. S3**b and S3c show that the original morphology of melamine gradually broken at a processing temperature of 350 °C, which then transformed into thick plates mixed with some rods at 400 °C. As the annealing temperature was increased to 500 °C, the nanorods disappeared and micro-sized particles with irregular shape were obtained (**Fig. S3**d).

Fig. S2 SEM images of (a) raw material melamine, (b) products synthesized at 450 $^{\circ}$ C for 10 min, and (c) products prepared at 450 $^{\circ}$ C for 120 min. (d) EDS elemental mapping images of MNRs.

Fig. S3 SEM images of carbon nitride samples obtained at different temperatures, (a) 300 °C, (b) 350 °C, (c) 400 °C, and (d) 500 °C. SEM images of (e) $g-C_3N_4$ synthesized at 550 °C and (f) BM synthesized at 450 °C. The scale bar represents 10 μ m.

Scheme S1 Formation of carbon nitrides during the thermal polymerization of melamine, proposed by Ref. 2.

The thermal polymerization of melamine is shown in **Scheme S1**,^[2] indicating that as the pyrolysis temperature was gradually increased, the C–N rings became connected to yield melam, melem, and melon. However, C–N hexagonal ring remained undestroyed, exhibiting a higher stability.

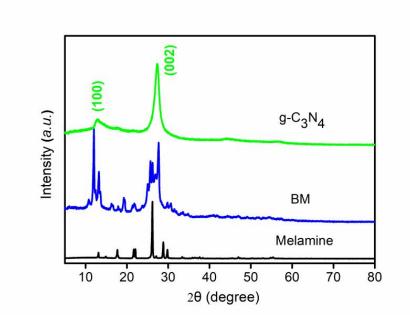


Fig. S4 XRD patterns of the as-synthesized $g-C_3N_4$, BM, and the raw melamine.

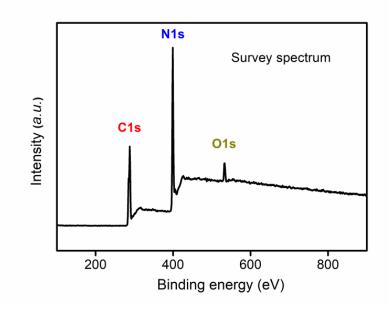
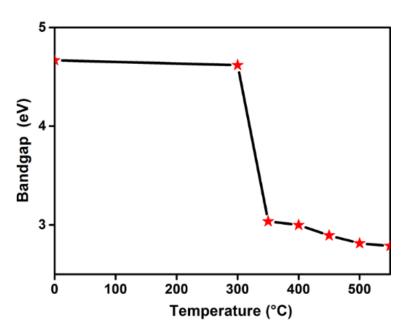
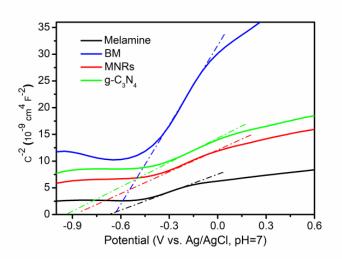
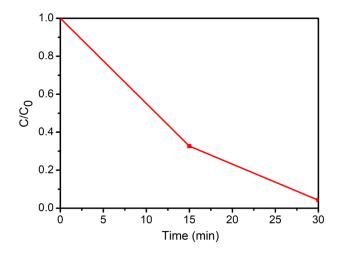
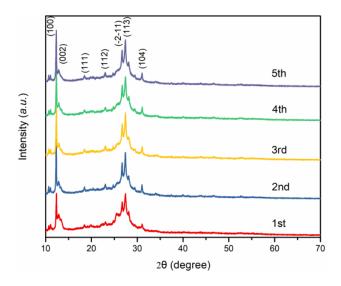
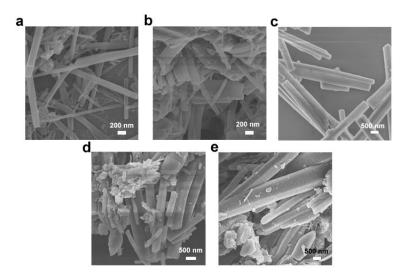



Fig. S5 XPS survey spectrum of MNRs.

Fig. S6 Fitted Tauc plots of: (a) melamine, (b) BM, (c) MNRs, and (d) g-C₃N₄.

Fig. S7 Temperature-dependent bandgap of carbon nitride products via the pyrolysis of melamine.


Fig. S8 Mott–Schottky plots of melamine, BM, MNRs, and g-C₃N₄.

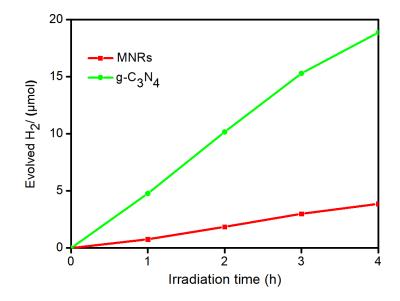

Fig. S9 Time-dependent photocatalytic degradation of RhB on MNR photocatalysts under low-temperature environment (0-3 °C).

Fig. S10 XRD patterns of MNRs after each cycling test of photocatalytic degradation of RhB.

Fig. S11 SEM images of MNRs after each cycling test of photocatalytic degradation of RhB. (a) first, (b) second, (c) third, (d) fourth, and (e) fifth cycle.

Fig. S12 Time course of H_2 evolution from a 10 vol% aqueous triethanolamine solution by 0.1 wt% Pt-loaded MNRs and g-C₃N₄ under visible-light irradiation.

References

[1] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller and W. Schnick, J. Am. Chem. Soc.,
2013, **125**, 10288-10300.

[2] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, **8**, 76-80.