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1 Experimental Procedures

1.1 Materials

All reagents and solvents were purchased from commercial sources and were used without further purification, unless indicated otherwise. 

1.2 Characterization

FTIR spectra of the samples were collected on a TENSOR 27 FTIR at a resolution of 2 cm-1. solid-state 13C NMR was performed using a Solid 

State Varian INOVA 400 MHz. Powder X-ray diffraction (XRD) data were recorded with a PANalytical Empyrean diffractometer, operated at 45 

kV and 40 mA (scanning step: 0.02° per step). The diffraction patterns were recorded in the range of 5-60° 2θ. X-ray photoelectron spectroscopy 

(XPS) measurements: XPS experiments were performed with a PHI 3056 spectrometer equipped with an Al anode source operated at 15 KV 

and an applied power of 350 W and a pass energy of 93.5 eV. Samples were mounted on In foil since the C1s binding energy was used to 

calibrate the binding energy shifts of the sample (C1s = 284.8 eV). The nitrogen adsorption and desorption isotherms were measured at 77 K 

under a Gemini 2360 surface area analyzer. The samples were outgassed at 150 oC for 16 h before the measurements. Surface areas were 

calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained from the 

adsorption branches using non-local density functional theory (NLDFT) method. The CO2 adsorption and desorption isotherms were measured 

at 273 K by Autosorb-1-C Quantachrome analyzer. Elemental analyses were performed by Atlantic Microlab Inc., Norcross, GA.

1.3 Heat of CO2 Adsorption Calculation

The isosteric heat of adsorption values were calculated using the Clausius-Clapeyron equation: 

ln (𝑃1

𝑃2
) = ∆𝐻𝑎𝑑𝑠 ×  

𝑇2 ‒ 𝑇1

𝑅 × 𝑇1 × 𝑇2

where Pi is pressure for isotherm i, Ti is temperature for isotherm i, R is 8.315 J K-1 mol-1; which was used to calculate isosteric heat of adsorption 

( ) of a gas as a function of the quantity of gas adsorbed.∆𝐻𝑎𝑑𝑠

Pressure as a function of the amount of CO2 adsorbed was determined by the Toth model for the isotherms.

𝑄 =
𝑄𝑚 × 𝐵(1/𝑡)𝑃1

(1 + 𝐵 × 𝑃)1/𝑡

where Q = moles adsorbed, Qm = moles adsorbed at saturation, P = pressure; B and t =constants; which can

be used to calculate the pressure P.
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1.4 Synthesis of Monomers

NC CN

CN

R
R

R
R

R

R

R

R

R
R

R
R

CN-3 R=H
F12CN-3 R=F

O O

O

CN

NC

CN

R3R3

R1 R2 R1

R2

R3

R3

R1

R2

R3

R3

O-CN-3
R1=R2=R3=H
O-F3CN-3
R1=R3=H, R2=F
O-F6CN-3
R3=H, R1=R2=F
O-F12CN-3
R1=R2=R3=F

O

O

R5

R5
R5

R5

R5

R5
R5

R5

CN

R4R4

R4R4

R4R4

NC
R4

R4

O-CN-2
R4=R5=H
O-F8CN-2
R5=H, R4=F
O-F8CN-2'
R4=H, R5=F
O-F16CN-2
R4=R5=F

Scheme S1 Structures of fluorinated nitriles used in this study.

Commercially available starting materials and solvents were purchased from vendors and were used without further purification unless noted 

otherwise. The 1H and 19F NMR spectra were recorded on Bruker 400 spectrometer using the residual solvent peaks, tetramethylsilane or α,α,α-

trifluorotoluene (δCF3 = -62.61 p.p.m.) as the internal standard respectively. 13C Spectra were not included since they are not informative, due 

to extensive coupling between 13C and 19F nuclei, low intensity and number of missing peaks. 1,3,5-tris((trimethylsilyl)oxy)benzene,[1] 5'-(4-

cyanophenyl)-[1,1':3',1''-terphenyl]-4,4''-dicarbonitrile (CN-3),[2] 5'-(4-cyano-2,3,5,6-tetrafluorophenyl)-2,2'',3,3'',5,5'',6,6''-octafluoro-

[1,1':3',1''-terphenyl]-4,4''-dicarbonitrile (F12CN-3),[3, 4] and 4,4',4''-(Benzene-1,3,5-triyltris(oxy))tribenzonitrile (O-CN-3)[4, 5] were prepared 

according to published methods.

Synthesis of 4,4',4''-(benzene-1,3,5-triyltris(oxy))tris(3-fluorobenzonitrile) (O-F3CN-3)

The reaction flask (250 mL) containing magnetic stirring bar was charged with 1,3,5-tris((trimethylsilyl)oxy)benzene (10.28 g, 30 mmol), 

followed by the addition of 3,4 -difluorobenzonitrile (13.90 g, 100 mmol). The reaction flask was purged with Argon, and anhydrous DMF (100 

mL) was added. Anhydrous cesium fluoride (1.52 g, 10 mmol) was carefully added in one portion, the reaction flask was capped with a septum 

connected to a bubbler and stirred at 120 °C for 24 hours. The reaction mixture was poured in water under vigorous stirring and the resulting 

precipitate was filtered off and air dried. The title product was obtained after the re-crystallization from ethanol. The product was obtained 

after filtration as a white powder (9.2 g, 63 %).
1H NMR (CDCl3, 400 MHz) δ 6.48 (s, 3H), 7.15 (t, 3J = 8 Hz, 3H), 7.45~7.51 (m, 6H); 19F NMR (CDCl3, 376 Hz) δ -126.76 (t, 3J = 9.02 Hz, 3 F).



5

Synthesis of 4,4',4''-(benzene-1,3,5-triyltris(oxy))tris(3,5-difluorobenzonitrile) (O-F6CN-3)

The reaction flask (250 mL) containing magnetic stirring bar was charged with 1,3,5-tris((trimethylsilyl)oxy)benzene (10.28 g, 30 mmol), 

followed by the addition of 3,4,5-trifluorobenzonitrile (15.71 g, 100 mmol). The reaction flask was purged with Argon, and anhydrous DMF 

(100 mL) was added. Anhydrous cesium fluoride (1.52 g, 10 mmol) was carefully added in one portion, the reaction flask was capped with a 
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septum connected to a bubbler and stirred at room temperature for 24 hours. The reaction mixture was poured in water under vigorous 

stirring and the resulting precipitate was filtered off and air dried. The title product was obtained after the re-crystallization from methanol. 

The product was obtained after filtration as a white powder (15.0 g, 93 %).
1H NMR (CDCl3, 400 MHz) δ 6.30 (s, 3H), 7.34~7.40 (m, 6H); 19F NMR (CDCl3, 376 Hz) δ -121.14 (d, 3J = 6.8 Hz, 6F).
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Synthesis of 4,4',4''-(benzene-1,3,5-triyltris(oxy))tris(2,3,5,6-tetrafluorobenzonitrile) (O-F12CN-3)

The reaction flask (250 mL) containing magnetic stirring bar was charged with 1,3,5-tris((trimethylsilyl)oxy)benzene (10.28 g, 30 mmol), 

followed by the addition of pentafluorobenzonitrile (19.3 g, 100 mmol). The reaction flask was purged with Argon, and anhydrous DMF (100 

mL) was added. Anhydrous cesium fluoride (1.52 g, 10 mmol) was carefully added in one portion, the reaction flask was capped with a septum 

connected to a bubbler and stirred at room temperature for 24 hours. The reaction mixture was poured in water under vigorous stirring and 

the resulting precipitate was filtered off and air dried. The title product was obtained after the re-crystallization from methanol. The product 

was obtained after filtration as a white powder (12.58 g, 67 %).
1H NMR (CDCl3, 400 MHz) δ 6.49 (s, 3H); 19F NMR (CDCl3, 376 Hz) δ -149.65~-149.55 (m, 6F), -130.49~-130.38 (m, 6F).
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Synthesis of 4,4'-([1,1'-biphenyl]-4,4'-diylbis(oxy))dibenzonitrile (O-CN-2)

The reaction flask (300 mL) containing magnetic stirring bar was charged with [1,1'-biphenyl]-4,4'-diol (5.59 g, 30 mmol), followed by the 

addition of 4-fluorobenzonitrile (9.69 g, 80 mmol). The reaction flask was purged with Argon, and anhydrous DMSO (200 mL) was added. 

Anhydrous potassium carbonate (10.37 g, 75 mmol) was added in one portion, the reaction flask was capped with a septum and stirred at 150 

°C for 8 hours. Additional amount of 4-fluorobenzonitrile (9.69 g, 80 mmol) was introduced and the reaction mixture was stirred at 150 °C for 

another 8 hours. The reaction mixture was poured in water under vigorous stirring and the resulting precipitate was filtered off and air dried. 

The title product was obtained after the re-crystallization from DMSO. The product was obtained after filtration as a white powder (7.35 g, 63 

%).
1H NMR (CDCl3, 400 MHz) δ 7.07 (d, 3J = 8.8 Hz, 4H), 7.15 (d, 3J = 8.8 Hz, 4H), 7.62 (t, 3J = 8.8 Hz, 8H);
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Synthesis of 4,4'-((perfluoro-[1,1'-biphenyl]-4,4'-diyl)bis(oxy))dibenzonitrile (O-F8CN-2)

The reaction flask (300 mL) containing magnetic stirring bar was charged with [1,1'-biphenyl]-4,4'-diol (5.59 g, 30 mmol), followed by the 

addition of pentafluorobenzonitrile (15.44 g, 80 mmol). The reaction flask was purged with Argon, and anhydrous DMSO (200 mL) was added. 

Anhydrous potassium carbonate (10.37 g, 75 mmol) was added in one portion, the reaction flask was capped with a septum and stirred at 

room temperature for 24 hours. The reaction mixture was poured in water under vigorous stirring and the resulting precipitate was filtered 

off and air dried. The title product was obtained after the re-crystallization from isopropanol. The product was obtained after filtration as a 

white powder (10.0 g, 63 %).
1H NMR (CDCl3, 400 MHz) δ 7.08 (d, 3J = 8.8 Hz, 4H), 7.54 (d, 3J = 8.8 Hz, 4H); 19F NMR (CDCl3, 376 Hz) δ -150.26~-150.16 (m, 4F), -131.74~-

131.63 (m, 4F).
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Synthesis of 4,4'-([1,1'-biphenyl]-4,4'-diylbis(oxy))bis(2,3,5,6-tetrafluorobenzonitrile) (O-F8CN-2’)

The reaction flask (250 mL) containing magnetic stirring bar was charged with perfluoro-1,1'-biphenyl (6.68 g, 20 mmol), followed by the 

addition of 4-hydroxybenzonitrile (5.35 g, 45 mmol). The reaction flask was purged with Argon, and anhydrous DMSO (70 mL) was added. 

Anhydrous potassium carbonate (8.30 g, 60 mmol) was added in one portion, the reaction flask was capped with a septum and stirred at 100 
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°C for 2 hours. The reaction mixture was poured in water under vigorous stirring and the resulting precipitate was filtered off and air dried. 

The title product was obtained after the re-crystallization from isopropanol. The product was obtained after filtration as a white powder (9.7 

g, 91 %).
1H NMR (CDCl3, 400 MHz) δ 7.14 (d, 3J = 8.8 Hz, 4H), 7.71 (d, 3J = 8.8 Hz, 4H); 19F NMR (CDCl3, 376 Hz) δ -151.90~-151.84 (m, 4F), -136.64~-

136.57 (m, 4F).
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Synthesis of 4,4'-((2,2',3,3',5,5',6-heptafluoro-[1,1'-biphenyl]-4,4'-diyl)bis(oxy))bis(2,3,5,6-tetrafluorobenzonitrile) (O-F16CN-2)

The reaction flask (250 mL) containing magnetic stirring bar was charged with 2,2',3,3',5,5',6,6'-octafluoro-[1,1'-biphenyl]-4,4'-diol (6.60 g, 20 

mmol), followed by the addition of pentafluorobenzonitrile (11.68 g, 60 mmol). The reaction flask was purged with Argon, and anhydrous 

DMSO (100 mL) was added. Anhydrous potassium carbonate (6.91 g, 50 mmol) was added in one portion, the reaction flask was capped with 

a septum and stirred at 120 °C for 2 hours. The reaction mixture was poured in water under vigorous stirring and the resulting precipitate was 

filtered off and air dried. The title product was obtained after the re-crystallization from ethanol. The product was obtained after filtration as 

a white powder (4.9 g, 36 %).
19F NMR (CDCl3, 376 Hz) δ -154.35 (d, 3J = 15.0 Hz, 4F), -152.64~-152.54 (m, 4F), -136.13~-136.06 (m, 4F), -130.74~-130.64 (m, 4F).

1.5 Preparation of CTF Materials

Notes: Volatile products, maybe CF4, C2F4 and F2, are produced during the reaction. After cooling down to room temperature, the quartz 

tube must be immersed in liquid nitrogen for ~10 min, and then opened carefully in the hood.

CTF materials were synthesized by ZnCl2-catalyzed ionothermal method.[6] Typically, the synthesis of F12CTF-3 was shown as the following: A 

mixture of 5'-(4-cyano-2,3,5,6-tetrafluorophenyl)-2,2'',3,3'',5,5'',6,6''-octafluoro-[1,1':3',1''-terphenyl]-4,4''-dicarbonitrile (F12CN-3) (0.6 mmol, 

304 mg) and ZnCl2 (6.0 mmol, 819 mg, 10:1) was vacuum-sealed in a quartz tube, and then heated at 450 °C for 20 h in a muffle furnace (5 

°C/min). After that, the temperature was increased to 600 °C and maintained for another 20 h. The obtained black powder was subsequently 

ground and washed thoroughly with dilute HCl, water, THF and acetone. The material was then dried in an oven at 120 °C for 24 h. 

CTF-3, O-CTF-3, O-F3CTF-3, O-F6CTF-3, O-F12CTF-3, O-CTF-2, O-F8CTF-2, O-F8CTF-2’, O-F16CTF-2 were prepared using the corresponding 

monomers, the molar ratio of nitrile monomer: ZnCl2 is 1:10.

F12CTF-3-350, F12CTF-3-450, and F12CTF-3-600 was prepared at the target temperature (400 °C, 450 °C and 600 °C) for 40 h, respectively. 

F12CTF-3-450/800 was prepared by heating at 450 oC for 20 h and then 800 oC for 20 h.
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2 Results and Discussion
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Figure S1 Fourier-transform infrared (FT-IR) spectroscopy of F12CTF-3 and CTF-3.
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Table S1 Summarization of various solid physisorbents with CO2 capacities > 5.0 mmol g-1 at 273 K and 1 bar.

CO2 uptake (mmol g-1) ReferenceSample SBET(m2 g-1)
273 K 298 K

F12CTF-3 1759 6.58 4.33 This work
PPF-1 1740 6.07 3.35 (295 K) [7]

Bipy-CTF600 2479 5.58 2.95 [8]

HAT-CTF-450/600 1090 6.3 4.8 (297 K) [6]

SU-MAC-500 941 6.03 4.50 [9]

F-DCBP-CTF-1 2437 5.98 3.82 [10]

FCTF-1-600 1535 5.53 3.41 [11]

F-MOP-2 1031 5.07 1.55 [12]

BILP-3 1306 5.11 3.30 [13]

BILP-4 1135 5.34 3.59 [14]

BILP-12 1497 5.07 3.18 [15]

TBILP-2 1080 5.18 3.32 [16]

TB-COP-1 1340 5.19 3.16 [17]

ALP-1 1235 5.36 3.25 [18]

NPOF-1-NH2 1535 5.84 3.77 [19]

Fe-POP-2 855 5.10 - [20]

CQN-1g 1870 7.16 4.57 [21]
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Table S2 CO2 uptake capacities of F12CTF-3 prepared at different reaction temperatures

CO2 uptake (mmol g-1)
273 K 298 KSample SBET

(m2 g-1)
Vtotal
(cm3 g-1) 0.15 

bar
1 
bar

0.15 
bar

1 
bar

Qst 
(kJ mol-1)a

F Content 
(wt%)b

N Content 
(wt%)b

F12CTF-3-350 842 0.72 0.62 1.79 0.34 1.16 26.4 16.06 7.91
F12CTF-3-450 1881 1.35 1.91 6.43 1.04 3.99 24.2 7.00 6.37
F12CTF-3-
450/600 1558 1.32 2.45 6.58 1.38 4.33 24.5 3.70 5.5
F12CTF-3-600 1656 - 2.40 6.47 1.30 4.07 26.8 -
F12CTF-3-
450/800 2085 1.77 1.26 4.70 0.78 3.18 18 2.74 3.22
a Data corresponding to CO2 capacity of 0.5 mmol g-1. b Obtained by XPS measurement. The content of F and N in the monomer 
F12CN-3 was 38.2 wt% and 7.0 wt%, respectively.
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Table S3 CO2 uptake capacities of O-CTF-3 and O-CTF-2 with different F content within the backbone.

CO2 uptake (mmol g-1)
273 K 298 KSample SBET(m2 g-1)
0.15 bar 1 bar 0.15 bar 1 bar

O-CTF-3 1450 1.06 3.17 0.53 1.70
O-F3CTF-3 1886 1.08 3.61 0.60 2.21
O-F6CTF-3 1874 1.36 4.45 0.75 2.86
O-F12CTF-3 1822 1.77 5.59 0.81 3.04
O-CTF-2 1130 0.83 2.65 0.63 2.06
O-F8CTF-2 1878 0.96 3.47 0.62 2.31
O-F8CTF-2’ 1403 1.04 3.61 0.61 2.30
O-F16CTF-2 948 1.86 5.10 1.03 3.30
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Table S4 Elemental analysis (C, H, N and F) of O-CTF-2 with different F content within the backbone.

Elemental content in materials Elemental content in monomersSample SBET (m2 g-1)
C H N F C H N F

O-CTF-2 1130 81.34 1.92 2.69 - 80.4 4.1 7.2 -
O-F8CTF-2 1878 69.26 2.97 4.08 0.78 58.7 1.5 5.3 28.6
O-F8CTF-2’ 1403 71.40 2.51 4.24 4.46 58.7 1.5 5.3 28.6
O-F16CTF-2 948 53.02 - 5.40 16.84 46.2 - 4.1 44.9
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Figure S12 The snapshots of CO2 distribution at 1 bar using F12CTF-3 and CTF-3.
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Table S5 Element contents (C, N, H, F) and molecular weights of CTF materials used for CO2 uptake prediction.

Element content (wt%) CO2 capacity (mmol g-1)
Sample

C N H F 273 K 298 K
CTF-3 85.0 11.0 3.9 0 10.60 6.47

F1CTF-3 81.2 10.5 3.5 4.76 10.88 6.86
F3CTF-3 74.5 9.7 2.8 13.1 9.22 5.75
F6CTF-3 66.3 8.6 1.8 23.3 7.57 4.71
F12CTF-3 54.3 7.0 0.5 38.2 6.70 4.13
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Figure S13 Structural models of CTF materials used for CO2 uptake prediction and the obtained CO2 adsorption curves.
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Table S6 Comparison of the experimental results and CO2 uptake capacities predicted using a deep learning method.

Predicted CO2 uptake[a] Experimental results
Sample SBET Vtotal Vmicro 273 K 298 K 273 K 298 K
CTF-3 1454 1.32 0 0.55 0.77 2.13 1.34

F12CTF-3 1558 0.98 0.43 5.07 3.14 6.58 4.33
F12CTF-3-350 842 0.72 0.20 3.41 2.15 1.79 1.16
F12CTF-3-450 1881 1.35 0.47 5.02 2.98 6.43 3.99

F12CTF-3-450/800 2085 1.77 0.17 2.28 2.06 4.70 3.18

[a] The predicted CO2 uptake is determined via deep neural network trained from over 1000 data set. 

The deep learning neural network (DNN) with two hidden layers was created in MATLAB R2018a environment using backpropagation 

algorithm according to our previous study.[22] The weights and biases were the key two paremeters to determine neural network sturcture. 

The neural network was allowed to adjust the weight and biases value during training process to improve their performance. Neurons arranged 

in layers were needed to be connected each other into a neural network. Each neuron is usually a simple processing unit with many inputs to 

produce an output. The selection of neurons was significantly important. In our study, a part of SBET, Vmicro and Vmeso as well as the adsorption 

conditions (temperature and pressure) were selected as the input neurons. And CO2 adsorption capacity was chosen as the output neuron. 

Before the creation, the inputs and outputs are normalized in the range of 0 to 1. For simplicity, we assume that two hidden layers for DNN 

was chosen in our work, and the hidden neuron numbers were optimized by comparing the results derived from different hidden neurons 

numbers. Backpropagation training method was  used to train the neural networks. Training numbers was chosen less than 100000, and goal 

errors was chosen as 0.001 according to the reported study. And then, the predicted data was achieved using linear or nonlinear combination 

of the input vector, weights, biases and transfer functions. Among these analysisthe selected neuron number of hidden layers was 8 and 8 

respectively according to the optimized results.
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