Interface Modification by Multifunctional Ammonium Salt toward High Performance and Stability Planar Perovskite Solar Cells

Shuo Wang^a, Yu Zhu^a, Chengyan Wang^{a,b}*, Ruixin Ma^a**

a School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

b Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, PR China

c Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, Beijing 100083, PR China

*Corresponding author:

Chengyan Wang E-mail: chywang@yeah.net (C.Wang), Ruixin Ma Email: maruixin@ustb.edu.cn (R.Ma)

Fig. S1 Top-surface SEM images of the samples, (a) 0.5-CTAB, (b) 2-CTAB and (c) 5-CTAB.

Fig. S2 (a) XRD patterns of the MAPbI₃ film and the films with CTAB. (b) Magnified spectra from 13 to 16° (FWHM is the full width at half maximum).

Fig. S3 XPS spectra of the MAPbI₃ film and the films with CTAB.

Fig. S4 UPS spectra of (a) the MAPbI₃ film and (b) the films with 1 mg/ml CTAB.

Fig. S5 EDX maps for Pb, C, N, Br and I of the CTAB-device.

Fig. S6 J-V characteristics of the CTAB-device treated with different rotation speed.

Fig. S7 (a) Schematic illustration of the device structure, (b) J-V curves obtained from the best devices with and without CTAB treatment, (c) The corresponding EQE spectrum and integral current density, (d) Statistics of the PCE distribution.

Fig. S8 Top-surface SEM images of the samples, (a) $FA_{0.95}MA_{0.05}Pb(I,Br)_3$ (P), (b) P doped with MACl (P:MACl), (c) P:MACl treated with CTAB (P:MACl/CTAB).

Fig. S9 Voc dependence on light intensity.

Fig. S10 Images of the PSCs with or without CTAB tested in different humidity for 200h, respectively.

Fig. S11 The J_{sc} , V_{oc} and FF of the devices tested at 10-20 °C under 70-80% relative humidity (RH) without any encapsulation.

Table S1. The atom content of Pb, C, N, Br and I on the surface of the CTAB-film

Element	Atom %	Atom % error
С	30.20	0.94
Ν	19.80	0.94
Ι	35.77	1.18
Pb	12.97	0.86
Br	1.27	0.12

Table S2. The fitted parameters of TRPL decay curves for perovskite films

	$\tau_1^{(ns)}$	A1	$\tau_2^{(ns)}$	A2
w/o CTAB	13.01	0.68	62.73	0.32
w CTAB	66.49	0.81	121.00	0.21

	$R_{s}(\Omega)$	$R_{tr}(\Omega)$	$R_{rec}(\Omega)$
w/o CTAB	47.3	22.2	250.3
w CTAB	37.6	3.6	408.2

Table S3. The results of impedance spectroscopy measurements for perovskite films