Electronic Supplementary Information

Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a ''water-in-salt'' gel electrolyte

Ziyang Song,^a Hui Duan,^a Dazhang Zhu,^a Yaokang Lv,^b Wei Xiong,^c Tongcheng Cao,^{ad} Liangchun Li,^a Mingxian Liu,^{*ae} and Lihua Gan^{*a}

^aShanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.

^bCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R.

China.

^cKey Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and

Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China.

^dKey Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University,

Shanghai 201804, P. R. China.

^eCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P.

R. China

*Corresponding Authors

E-mail: liumx@tongji.edu.cn, ganlh@tongji.edu.cn, ganlh@tongji.edu.cn, ganlh@tongji.edu.cn, ganlh@tongji.edu.cn, ganlh@tongji.edu.cn, ganlh@tongji.edu.cn, ganlh@tongji.edu.cn), ganlh@tongji.edu.cn)), ganlh@tongji.edu.cn)), ganlh@tongji.edu.cn)), ganlh@tongji.edu.cn)), ganlh@tongji.edu.cn)), ganlh@tongji.edu.cn)), <a href="mailto:ganlh@tongji.edu.cn"/mailto:ganlh@tongji.edu.cn"/mailto:ganlh@tongji.edu.cn"/mailto:ganlh@tongji.edu.cn)), <a href="mailto:ganlh@tongji.edu.cn"/mailto:ganld@tongji.edu.cn"/mailto:ganld@tongji.edu.cn"/mailto:ganld@tongji.edu.cn)), <a href="mailto:ganlh@tongji.edu.cn"/mailto:ganld@tongji.edu.cn"/mailto:ganld@tongji

Fig. S1. A high-resolution TEM image of NSOC-2.

Fig. S2. (a) XRD patterns and (b) Raman spectra of $NSOC_S$.

Fig. S3. CV curves of NSOC-2 based supercapacitors using (a) 5 and (b) 10 m LiTFSI electrolyte, respectively.

Fig. S4. The contact angles of WIS electrolyte on the surface of NSOCs and commercial activated carbon (AC).

Fig. S5. Electrochemical performances of symmetrical supercapacitors using aqueous electrolytes: (a) CV curves and (b) GCD profiles of NSOC-2 based device in KOH, Na₂SO₄, and WIS electrolyte, respectively. GCD curves of NSOC-2 loaded supercapacitor in (c) KOH and (d) Na₂SO₄ electrolyte.

Fig. S6. Redox reactions and effects of N, S, O-related functional groups.

Fig. S7. Capacitance enhancement as a function of the temperature from 0 to $80 \,^{\circ}$ (the insets depict the images of lighted red LED lamps powered by a supercapacitor).

Fig. S8. A typical SEM image of the gel support.

Electrode Materials	Electrolyte Voltages	E	Р	Ref.
		$(Wh kg^{-1})$	$(W kg^{-1})$	
Commercial activate carbon	PVDF-HFP/[emim][NTf ₂] (2.5 V)	21.9	6250	26
MnO ₂ nanosheet/carbon fiber	PVA/LiCl (1.5 V)	27.2	979.7	69
Carbon nanotube/graphene aerogel	PVA/Na ₂ SO ₄ (1.8 V)	18.42	2320	68
Carbon nanosheet/graphene	PVA/KOH (1 V)	6.3	2400	42
Carbon foams	PVA/LiCl (2 V)	1.35	2900	59
Carbon nanofibers	PVA/KOH (1 V)	10.96	250	47
Graphene quantum dots	H ₂ SO ₄ /PVA (1 V)	18.75	108.7	70
Graphene oxide sheets	H ₃ PO ₄ /PVA (1 V)	4.4	24	67
Ternary-doped carbons	WIS/gel (2.3 V)	37.7	230	This
		31.1	979.7	Work
		24.7	6250	

Table S1. Comparison of the energy densities (E) between our assembled aqueous solid-state supercapacitor and the relative references.