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Structural analysis
FT-IR measurements.

Using FT-IR, the obtained materials were compared to the precursors, with the obtained spectra presented in Figure S1
(Pic@PMO) and S2 (Porph@PMO). In Figure S1, it is observed that the Pic@PMO spectrum shows a combination of peaks
characteristic for Picolinic acid and for Monoallyl PMO, indicating successful coupling. It has to be noted that the amide peak
around 1600 cm™ is coincidental with the C=N stretch of picolinic acid. When studying Figure S2, comparable behavior is
noted, but two major TCPPH, peaks (around 1550 and 1460 cm'!) show a drastically reduced intensity. As those peaks were
assigned to the COO—~ symmetric and antisymmetric stretching frequencies, this is an expected result.
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Figure S1. DRIFTS spectra of Monoallyl PMO, Pic@PMO and Picolinic acid, a zoom in on the region of interest for coupling
is provided
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Figure S2. DRIFTS spectra of Monoallyl PMO, Porph@PMO and TCPPH;, a zoom in on the region of interest for coupling is
provided



PXRD measurements.

In the obtained PXRD spectra (Figure S3), only one intense (100) reflection was observed at very low 20 values. As PMOs
only exhibit pore ordering and no structural ordering, this peak can be attributed to the uniform porous system and
corresponds with the pore diameter. As unmodified and modified materials show comparable maximum values for this (100)
reflection, it could be concluded that the functionalization of the Monoallyl PMO has no influence on the pore diameter (and
uniformity of the porous system).
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Figure S3. Powder XRD measurements of the PMO materials before and after functionalization. The observed peak is indicative for
the (100) reflection of the ordered pores.



STEM-EDX measurements.

To prove homogeneous distribution of the added functional groups over the material, STEM-EDX pictures were made. The
distribution of Co and Si over our Co(II) coordinated materials (Co@Pic@PMO and Co@Porph@PMO) are respectively
shown in Figure S4 and Figure S5. As the Co rich zones are coinciding with the PMO material and these ions can only be
coordinated to the added functional groups, we could conclude that the used post-modification procedure successfully spread
functional groups over the entire material.
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Figure S4. STEM-EDX picture of Co@Pic@PMO. The green dots represent Co (indicative for the coupled functional groups), the red
dots represent Si (indicative for the PMO backbone of the material).
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Figure S5. STEM-EDX picture of Co@Porph@PMO. The green dots represent Co (indicative for the coupled functional groups), the
red dots represent Si (indicative for the PMO backbone of the material).



UV-VIS absorption.

In order to check the grafting of Yb3* to the porphyrin, UV-VIS absorption measurements were performed. To enable
measurements in solution, uncoupled porphyrins were used as a test. In Figure S6, the results for unmodified TCPPH, the
Yb3* grafted material (Yb@TCPPH;) are presented. Both materials show very comparable absorption spectra, with a Soret
band around 425 nm and 4 Q bands around 525 nm, 550 nm, 600 nm and 650 nm). The observation of 4 different Q bands is
characteristic for the reduced symmetry of free base porphyrin, ! which implies preferential coordination of the Yb3* ions to
the peripheral carboxylic acid groups over the porphyrin ring cavity.
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Figure S6. UV-VIS absorption spectra of TCPPH, and Yb@TCPPH; in water.



Luminescence results

Pic@PMO.
A combined emission-excitation spectrum of pure Pic@PMO has been recorded (Figure S7). The material is easily excited

around 350-400 nm, which yields a broad emission peak from 400-600 nm. The sharp peaks observed between 420 and 480
nm originate from the Xenon excitation source and are thus not a feature of the material.
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Figure S7. Excitation emission spectrum of pure Pic@PMO

In Figure S8, a plot of S, in function of the temperature (between 273 and 373 K) is presented. It could be observed, that the
maximum value of S, is situated at 273 K with a value of 2.1078 % K-'. A solid line fitting the experimental points was added

as a guide for the eyes.
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Figure S8. Plot representing the relative sensitivity (S,) in function of temperature, with the max value for S, indicated as 2.1078.

The solid line is a guide for the eyes.



Porph@PMO.
Luminescent data for Yb@TCPPH, were collected for comparison and are shown in Figure S9.
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Figure S9. Combined luminescence spectrum of Ybo@TCPPH,, the excitation spectrum is presented in black. Two emission spectra
are presented, one obtained by excitation into the Soret band (at 469 nm) in green and one obtained by excitation in the Q bands (at

688 nm) in blue.



The excitation spectrum of Yb@Porph@PMO was recorded and is presented in Figure S10.
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Figure $10. Excitation spectrum of Yb@Porph@PMO (excited at 467 nm and observed in the Yb3* 2F 5/, 2 2F(7,2) transition peak),
the sample shows intense peaks at 450 nm and between 650 and 800 nm.



Luminescent decay.

Decay profiles of all investigated luminescent samples were measured and are presented in Figure S11-5S13.
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Figure S11. Decay profiles of Eu@Pic@PMO (left) and Tb@Pic@PMO (right)
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Figure S12. Decay profile of Eu,Tb@Pic@PMO, left decay of the 542 nm peak, right decay of the 616 nm peak
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Figure S13. Luminescence decay profile of Ybo@Porph@PMO (left: excited at 467 nm, right: excited at 650 nm)
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