Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Effect of Eutectic Accelerator in Selenium-doped Sulfurized Polyacrylonitrile for High Performance Room Temperature Na-S batteries

Lihui Wang,^{ab} Xin Chen,^{ab} Shuping Li,^{ab} Jiaqiang Yang,^b Yulong Sun,^a Linfeng Peng,^a Bin Shan^b and Jia Xie^{*a}

^a State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical

and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

^b State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials

Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

* Address correspondence to xiejia@hust.edu.cn

Fig. S1 XRD pattern (a) and Raman spectra (b) of $Se_{0.08}S_{0.92.}$

Fig. S2 SEM of S@pPAN

Fig. S3 XPS spectra of S2p for S@pPAN.

Fig. S4 XPS spectra of C 1s for Se_{0.08}S_{0.92}@pPAN (a) and S@pPAN (b).

Fig. S5 Voltage profiles at various current densities from 0.1 A g^{-1} to 3 A g^{-1} of Se_{0.08}S_{0.92}@pPAN in carbonate electrolyte (a) and in ether electrolyte (c). Voltage profiles at various current densities from 0.1 A g^{-1} to 3 A g^{-1} of S@pPAN in carbonate electrolyte (b) and in ether electrolyte (d).

Fig. S6 Comparisions of capacity utilization rates between $Se_{0.08}S_{0.92}$ @pPAN and S@pPAN in carbonate electrolyte (a) and in ether electrolyte (b).

Fig. S7 Cycle performance of Se_{0.06}S_{0.94}@pPAN and Se_{0.12}S_{0.88}@pPAN composite cathode in carbonate electrolyte.

Fig. S8 Equilibrium current of the S@pPAN and Se_{0.08}S_{0.92}@pPAN at different set voltages.

Fig. S9 Discharge/charge curves of Se_{0.08}S_{0.92}@pPAN and S@pPAN electrodes in carbonate electrolyte (a) and in ether electrolyte (b).

Fig. S10 CV curves of S@pPAN in carbonate electrolyte (a) and in ether electrolyte (b).

Fig. S11 S@pPAN (a) and Se_{0.08}S_{0.92}@pPAN (b) model for Na ion diffusion barriers employing DFT calculation. (c) Energy profiles for Na ion diffusion in S@pPAN and Se_{0.08}S_{0.92}@pPAN. Schematic representations of corresponding diffusion pathway for S@pPAN: (d) original state and (e) final state and for Se_{0.08}S_{0.92}@pPAN: (f) original state and (g) final state

Fig. S12 GITT voltage profiles of the $Se_{0.08}S_{0.92}$ @pPAN and of S@pPAN in carbonate electrolyte (a) and in ether electrolyte (b).

Fig. S13 UV-vis spectra of the S@pPAN and Se_0.08S $_{0.92}$ @pPAN cathodes solutions cycled in ether electrolyte.

Material	C (%)	N (%)	H (%)	S (%)	Se (%)		
Se0.06S0.94@pPAN	40.5	14.78	0.75	37.78	6.19		
Se _{0.08} S _{0.92} @pPAN	39.77	14.77	0.85	36.88	7.72		
Se0.12S0.88@pPAN	40.67	14.99	0.82	32.57	10.97		
S@pPAN	41.86	15.56	1	39.35	/		

Table S1. The C, N, H, S and Se content in the composite.

Table S2. Raman shifts (cm⁻¹) and assignments for Se_{0.08}S_{0.92}@pPAN.

Se0.08S0.92@pPAN	Assignments
307	C-S in plane bending
360	S-Se
470	S-S
805	C-S
926	Ring (containing S-S bond) Stretch
1325	D Band
1532	G Band

Table S3. FTIR wavenumbers (cm⁻¹) and assignments for Se_{0.08}S_{0.92}@pPAN.

Se0.08S0.92@pPAN	Assignments
1502	C=C Symmetric Stretch
1362	C-C Deformation
1250	C=N Symmetric Stretch
939	Ring Breath (containing C-S)
670	C-S Stretch
513	S-S Stretch

Table S4. Electric conductivity results of S@pPAN and Se_{0.08}S_{0.92}@pPAN using direct current (DC) polarization method.

Material	Resistance	Length(cm)	Area(cm ⁻²)	Electric conductivity(S/cm)
S@pPAN	3.17×10^{7}	0.121	0.785	$4.86 imes 10^{-9}$
Se0.08S0.92@pPAN	2.47×10^{7}	0.113	0.785	5.83×10^{-9}

Table S5. Prolonged cycle life of representative cathodes in carbonate electrolyte for Na-S batteries

Reference	Capacity retention	Decay rate per cycle
	$(mAh g^{-1})$	(%)
Ref.1	$487(500 \text{ cycles at } 0.7 \text{A g}^{-1})$	0.072
Ref.2	$456(200 \text{ cycles at } 0.5 \text{A g}^{-1})$	0.095
Ref.3	$202(160 \text{ cycles at } 0.5 \text{ A g}^{-1})$	0.214
Ref.4	$600(200 \text{ cycles at } 1.675 \text{ A g}^{-1})$	0.348
Ref.5	$292(200 \text{ cycles at } 0.1 \text{ A g}^{-1})$	0.059
Ref.6	256(400 cycles at 3.35 A g ⁻¹)	0.044
Ref.7	$290(350 \text{ cycles at } 0.1 \text{ A g}^{-1})$	0.288
Ref.8	648(500 cycles at 0.8 A g ⁻¹)	0.087
(This work)	$770(500 \text{ cycle at } 0.4 \text{ A g}^{-1})$	0.045

References

- T. H. Hwang, D. S. Jung, J. S. Kim, B. G. Kim and J. W. Choi, *Nano Lett.*, 2013, 13, 4532-4538.
- 2. L. Zeng, Y. Yao, J. Shi, Y. Jiang, W. Li, L. Gu and Y. Yu, *Energy Storage Mater.*, 2016, 5, 50-57.
- 3. Y. Yao, L. Zeng, S. Hu, Y. Jiang, B. Yuan and Y. Yu, *Small*, 2017, 13, 1603513.
- 4. S. Xin, Y.-X. Yin, Y.-G. Guo and L.-J. Wan, Adv. Mater., 2014, 26, 1261-1265.
- Y. X. Wang, J. Yang, W. Lai, S. L. Chou, Q. F. Gu, H. K. Liu, D. Zhao and S. X. Dou, J. Am. Chem. Soc., 2016, 138, 16576-16579.
- G. Xia, L. Zhang, X. Chen, Y. Huang, D. Sun, F. Fang, Z. Guo and X. Yu, *Energy Storage Mater.*, 2018, 14, 314-323.
- L. Zhang, B. Zhang, Y. Dou, Y. Wang, M. AlMamun, X. Hu and H. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 20422-20428.
- X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand and G. Wang, *Nat. Commun.*, 2018, 9, 3870.