Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Large-diameter and Heteroatom-doped Graphene Nanotubes Decorated with Transition Metals as Carbon Hosts for Lithium-Sulfur Batteries

Ogechi Ogoke^{a,1}, Sooyeon Hwang^{b,1}, Benjamin Hultman^a, Mengjie Chen^{a,}, Stavros Karakalos^c Yanghua He^a, , Adam Ramsey^a, Dong Su^{b,*}, Paschalis Alexandridis^{a,*}, and Gang Wu^{a,*}

^aDepartment of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States Email: <u>gangwu@buffalo.edu</u> (G. Wu) and <u>palexand@buffalo.edu</u> (P. Alexandridis)

^bCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States Email: <u>dsu@bnl.gov</u> (D. Su)

^cDepartment of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States

¹, These authors contributed equally

Figures S1 to S16

Tables S1 to S2

Figure S1. SEM images of each heteroatom doped graphene nanotube samples. Cobalt doped graphene nanotubes (CO-GNTs), cobalt-nickel doped graphene nanotubes (CN-GNTs), and iron-cobalt-nickel doped graphene nanotubes (FCN-GNTs) respectively.

Figure S2. SEM images of sulfur infused heteroatom doped graphene nanotube samples. Sulfur infused cobalt-nickel doped graphene nanotubes S@CO-GNTs, sulfur infused cobalt-nickel doped graphene nanotubes S@CN-GNTs, and sulfur infused iron-cobalt-nickel doped graphene nanotubes S@FCN-GNTs

Figure S3. HRTEM images of Co-GNTs, CN-GNTs, and FCN-GNTs. The scale bars are 5 nm.

Figure S4. HRTEM image of the FCN-alloy decorated graphene nanotubes (FCN-GNTs). The particle size is roughly 10-20 nm. The scale bar is 5 nm.

Figure S5. STEM and elemental mapping for Co-GNTs, showing uniform nitrogen doping and decorated Co particles.

Figure S6. STEM and elemental mapping for CoNi-GNTs, showing uniform nitrogen doping and decorated CoNi alloy particles.

Figure S7. STEM and elemental mapping for FeCoNi-GNTs, showing uniform nitrogen doping and decorated FeCoNi alloy particles.

Figure S8. Atomically dispersed atomic metal sites in graphene tubes, which are likely associated with adsorbed S.

Figure S9. STEM and elemental EDX mapping for S@FeCoNi-GNTs containing S inside the tubes. The green line highlighted region is elementally analyzed. The carbon (orange) tube-structure is visible with N (turquoise) and O (pink) doping present throughout. Sulfur (yellow) has

diffused, via melting, into the tube-structure which allows for excellent contact with the carbon hosts structure.

Table S1. Representative elemental content for the S@FeCoNi-GNT carbon. The actual ratios among F, Co, and Ni are close to the nominated 1: 1: 1

	Atomic %
Fe	0.37
Со	0.55
Ni	0.68
С	72.81
Ν	4.69
0	3.01
S	17.88

	Atomic %
Fe	23.17
Со	34.31
Ni	42.52

Figure S10. STEM and elemental EDX mapping for S@Co-GNTs containing S inside the tubes. The green line highlighted region is elementally analyzed. The carbon (orange) tube-structure is visible with N (turquoise) and O (pink) doping present throughout. Sulfur (yellow) has diffused, via melting, into the tube-structure which allows for excellent contact with the carbon hosts structure.

Figure S11. STEM and elemental EDX mapping for S@CoNi-GNTs containing S inside the tubes. The green line highlighted region is elementally analyzed. The carbon (orange) tube-structure is visible with N (turquoise) and O (pink) doping present throughout. Sulfur (yellow) has diffused, via melting, into the tube-structure which allows for excellent contact with the carbon hosts structure.

Figure S12. The N_2 adsorption and desorption isotherms of Co-GNTs, CN-GNTs, FCN-GNTs, and MWCNTs.

at.%	С	N	О	Со	Ni	Fe
Co-GNT	93.8	4.1	1.6	0.5	-	-
CoNi-GNT	92.9	4.5	1.5	0.3	0.8	-
FeCoNi-GNT	91.8	5.4	1.6	0.3	0.8	0.1

Table S2. Elemental qualification of M-GNTs determined by XPS.

Figure S13. TGA of the S@FCN-GNTs material.

Figure S14. The C/20, C/5, C/2, 1C, and 2C voltage profiles of S@MWCNTs, S@Co-GNTs, S@CN-GNTs, and S@FCN-GNTs.

Figure S15. Short-term cyclic stability of M-GNT hosted S cathodes in Li-S batteries

Figure S16. Discharge voltage profiles of 1st, 5th, 25th, and 50th cycles for S@FeCoNi-GNTs cells at C/5.

Figure S17. Cycle tests in specific capacity and areal capacity of ultra-high loading S@FCN-GNTs (~4.5 mgS cm⁻²), which discharged 1234.7 mAh g⁻¹ (5.52 mAh cm⁻²) at C/20 and 909.0 mAh g⁻¹ (4.07 mAh cm⁻²) at C/5.

Figure S18. EIS of full Li-S cells with S@Co-GNTs, S@CN-GNTs, and S@FCN-GNTs materials after rate capability testing from 1.0 Hz to 100 kHz.

Table S3. A comparison of the S@FCN-GNTs material's cycle lifetime performance at 1C (this work) to other heteroatom-doped carbon nanostructures for Li-S batteries reported in the literature. (* = 1600 mA g^{-1})

Carbon Morphology	Doped Heteroatoms and Nanoparticles	Voltage Range (V)	Initial Performance at 1C (mAh g ⁻¹)	After (n) Cycles at 1C (mAh g ⁻¹)	Capacity loss per cycle (%)
This work (S@FCN- GNTs)	N/O and Fe, Co, and Ni	2.7 – 1.5	956	554 (500)	0.0839
Carbon nanosheets ¹	N and Co	2.8 - 1.7	825	633 (200)	0.0960
Carbon microclusters ²	N and Co	2.8 - 1.7	905	650 (400)	0.0704
Hierarchical porous carbon ³	N/P	2.8 - 1.7	614	456 (500)	0.0514
Nonporous carbon ⁴	N/O	3.0 - 1.5	360*	540 (300)*	

References:

- 1. S. Liu, J. Li, X. Yan, Q. Su, Y. Lu, J. Qiu, Z. Wang, X. Lin, J. Huang and R. Liu, *Advanced Materials*, 2018, **30**, 1706895.
- 2. P. Wang, Z. Zhang, X. Yan, M. Xu, Y. Chen, J. Li, J. Li, K. Zhang and Y. Lai, *Journal of Materials Chemistry A*, 2018, **6**, 14178-14187.
- 3. J. Cai, C. Wu, Y. Zhu, K. Zhang and P. K. Shen, *Journal of Power Sources*, 2017, **341**, 165-174.
- 4. K. Mi, S. Chen, B. Xi, S. Kai, Y. Jiang, J. Feng, Y. Qian and S. Xiong, *Advanced Functional Materials*, 2017, **27**, 1604265.