Supporting Information for

Pyrrole-an additives for improving the efficiency and stability of

perovskite solar cells

Xuping Liu, Jihuai Wu*, Qiyao Guo, Yuqian Yang, Quanzhen Liu, Hui Luo, Xiaobing, Wang,

Xin He, Miaoliang Huang, Weihai Sun, Zhang Lan

*Correspondence to: jhwu@hqu.edu.cn

This PDF file includes:

Figs. S1 to S7

Tables S1 to S5

^{*} Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University; Xiamen, Fujian 361021, China. E-mail: <u>jhwu@hqu.edu.cn</u>

Fig. S1 (a) FTIR spectra of the unannealed pristine film, unannealed modified film (0.3 M Pr) and annealed modified film (0.3 M Pr); (b) Magnifications of FTIR spectra of the corresponding films from the wavelengths of 1200cm^{-1} to 1670 cm^{-1} .

Fig. S2 XRD patterns of the films with and without pyrrole doping.

Fig. S3 (a) *J-V* curves of the devices with and without pyrrole doping under the forward bias scan and reverse bias scan (active area of the devices were defined as 0.1225 cm^2); (b) *J-V* curves (reverse scan) of the devices with and without pyrrole doping (active area of the devices were defined as 0.37 cm^2), the illustration is the Photograph of a typical device on a $2.0 \times 2.0 \text{ cm}^2$ substrate.

Fig. S4 Photovoltaic parameters of 15 PSCs with the pristine film and modified films (0.15 M Pr, 0.3 M Pr and 0.6 M Pr).

Fig. S5 Steady-state power output characteristics and the PCE of the pristine device.

Fig. S6 Stability evaluation of the devices with and without pyrrole doping for 32 d stored in a desiccator $(10 \pm 5 \text{ RH}\%, 25 \text{ °C}).$

Fig. S7 Dependence of (a) J_{SC} and (b) V_{OC} on light intensity for pristine and modified devices (0.3 M Pr).

Sample	$A_1(\%)$	τ_1 (ns)	A_2 (%)	$ au_2$ (ns)	$ au_{\mathrm{av}}\left(\mathrm{ns} ight)$
Pristine	15.79	10.810	84.21	86.741	74.750
0.15 M Pr	15.10	12.421	84.90	95.91	83.30
0.3 M Pr	10.06	9.619	89.94	96.613	87.859
0.6 M Pr	19.05	8.045	80.95	80.487	66.687

Table S1 Fitting parameters for the TRPL spectra by using bi-exponential function shown in Fig. 3c.

Table S2 Photovoltaic data of the PSCs with pristine modified films (0.15 M Pr, 0.3 M Pr and 0.6 M Pr).

Sample	$V_{\rm OC}$ (V)	$J_{ m SC}~({ m mA}{\cdot}{ m cm}^{-2})$	FF	PCE (%)
Pristine	1.101	22.26	0.76	18.58
0.15 M Pr	1.116	22.48	0.77	19.23
0.3 M Pr	1.142	22.99	0.76	20.02
0.6 M Pr	1.085	22.24	0.76	18.23

Sample	Scan direction	$V_{\rm OC}$ (V)	$J_{ m SC}~(m mA{\cdot} m cm^{-2})$	FF	PCE (%)
Pristine	Forward scan	1.044	22.79	0.64	15.17
	Reverse scan	1.103	22.41	0.75	18.48
0.3 M Pr	Forward scan	1.099	22.29	0.72	17.72
	Reverse scan	1.142	23.38	0.75	20.07

Table S3 Photovoltaic data of the devices with and without pyrrole doping under different scan directions.

Table S4 Photovoltaic data of the devices with and without pyrrole doping under the reverse bias scan.

Sample	$V_{\rm OC}$ (V)	$J_{\rm SC}~({ m mA}\cdot{ m cm}^{-2})$	FF	PCE (%)
Pristine	1.049	21.91	0.73	16.87
0.3 M Pr	1.121	22.19	0.75	18.67

Table S5 Photovoltaic performance parameters of 15 devices with the pristine and modified films.

Sample	Data	$V_{\rm OC}$ (V)	$J_{\rm SC}~({ m mA}{\cdot}{ m cm}^{-2})$	FF	PCE (%)
Pristine	Champion	1.117	22.65	0.76	18.79
	Average	1.104 ± 0.012	22.39 ± 0.25	0.75 ± 0.01	18.24 ± 0.61
0.15 M Pr	Champion	1.123	22.78	0.77	19.43
	Average	1.116 ± 0.007	22.51 ± 0.31	0.76 ± 0.02	18.97 ± 0.27
0.3 M Pr	Champion	1.16	23.12	0.77	20.07
	Average	1.145 ± 0.014	22.82 ± 0.32	0.76 ± 0.01	19.79 ± 0.35
0.6 M Pr	Champion	1.095	22.52	0.76	18.45
	Average	1.085 ± 0.01	22.31 ± 0.26	0.76 ± 0.01	18.04 ± 0.57