Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Confinement pyrolysis boosting metal organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes

Ming Zhang, Rui Luo, Chaohai Wang, Wuxiang Zhang, Xin Yan, Xiuyun Sun, Lianjun Wang, Jiangsheng

Li*

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

lijsh@njust.edu.cn.

Fig. S1The SEM (a) and TEM (b) images of resultant ZIFs; inset (a) is the enlarge SEM image.

Fig. S2 The TEM and SEM images of ZIFs and homologous carbide ZIFs-9, respectively.

Fig. S3 The SEM and TEM images of resultant NDHC-7/8/10, respectively. The scale bar is 1.0 μm for (a-c); 200 nm for (d-f)

Sample	S_{BET} (m ² g ⁻¹)	V _{pore} (cm ³ g ⁻¹)	V _{meso/macr} o (cm ³ g ⁻¹)	All nitrogen (%)	Pyridinic-N (%)	Pyrrolic- N (%)	Graphitic-N (%)
NDHC-7	383.9	0.36	0.26	7.4	49.4	23.3	27.3
NDHC-8	449.5	0.39	0.29	4.1	38.1	17.5	44.4
NDHC-9	448.9	0.47	0.36	3.1	27.7	18.1	54.2
NDHC-10	331.2	0.41	0.35	1.5	15.3	21.5	63.2
ZIFs-9	452.1	0.28	0.21	3.7	29.6	21.2	49.2

Table S1 The $S_{\text{BET}},\,V_{\text{pore}},\,V_{\text{meso/macro}}\,\text{and}$ the content of different nitrogen species

Fig. S4 TAG and heat flow curves of ZIFs in N_2 (a), ZIFs-9 in air (b), ZIFs@AF in N_2 (c), NDHC-9 in air (d).

Fig. S5 XPS survey of NDHC-7, NDHC-8, NDHC-9 and NDHC-10.

Fig. S6 (a, b) The XRD of ZIFs, ZIFs@AF, ZIFs-9 and NDHC-9, (c) the Raman spectra of ZIFs-9 and NDHC-9, (d) the N_2 adsorption-desorption isotherms and pore size distribution of ZIFs-9, (e) XPS full spectrum and (f) high-resolution N_{1s} XPS spectra of ZIFs-9.

Fig. S7 Photographic images of water contact angles on the surfaces of ZIFs-9 and NDHC-9.

Fig. S8 (a) the degradation efficiency of ZIFs-9; (b) the static adsorption of ZIFs-9.

	R	eaction Condition	Time used for	D 0	
Catalyst	BPA (ppm)	Oxone dosage (g/L)	Catalyst dosage(g/L)	>97% removal (min)	Ref.
CuFe ₂ O ₄ -Fe ₂ O ₃	5	0.36	0.2	5	1
CuFe ₂ O ₄	50	0.5	0.4	60	2
CNS	50	0.5	0.3	100	3
Biochar	10	0.1	0.2	8	4
NCNTFs	25	0.4	0.05	30	5
Fe _x Co _y @C	20	0.2	0.1	25	6
Co ₃ O ₄ /CC	10	0.1	0.1	7	7
Fe ₃ O ₇ @C-650	20	0.2	0.1	30	8
FeCo-NC-2	20	0.2	0.1	4	9
NDHC-9	20	0.15	0.2	5	This work

Table S2 The comparative of oxone dosage, catalyst dosage and catalytic efficiency.

Fig. S9 XPS full spectra of the resultant and the used NDHC-9.

Fig. S10 The UV spectra of β -Carotene/PMS system.

References

- 1. W. D. Oh, Z. Dong, Z. T. Hu and T. T. Lim, J. Mater. Chem. A, 2015, 3, 22208-22217.
- 2. Y. Xu, J. Ai and H. Zhang, J. Hazard. Mater., 2016, 309, 87-96.
- 3. K. Y. A. Lin and Z. Y. Zhang, *Chem. Eng. J.*, 2017, **313**, 1320-1327.
- 4. B. C. Huang, J. Jiang, G. X. Huang and H. Q. Yu, J. Mater. Chem. A, 2018, 6, 8978-8985.
- 5. W. Ma, N. Wang, Y. Fan, T. Tong, X. Han and Y. Du, *Chem. Eng. J.*, 2018, **336**, 721-731.
- 6. X. Li, A. I. Rykov, B. Zhang, Y. Zhang and J. Wang, Catal. Sci. Technol., 2016, 6, 7486-7494.
- R. Luo, C. Liu, J. Li, C. Wang, X. Sun, J. Shen, W. Han and L. Wang, J. Mater. Chem. A, 2018, 6, 3454-3461.
- 8. X. Li, A. I. Rykov, B. Zhang, Y. Zhang and J. Wang, Catal. Sci. Technol., 2016, 6, 7486.
- X. Li, X. Huang, S. Xi, S. Miao, J. Ding, W. Cai, S. Liu, X. Yang, H. Yang, J. Gao, J. Wang, Y. Huang, T. Zhang, and B. Liu, *J. Am. Chem. Soc.*, 2018, 140, 39, 12469.