Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

High-Performance Ultrathin Mixed-Matrix Membranes

Based on Adhesive PGMA-co -POEM Comb-like

Copolymer for CO₂ Capture

Na Un Kim, Byeong Ju Park, Jae Hun Lee, Jong Hak Kim*

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, South Korea

* To whom correspondence should be addressed Tel: +82-2-2123-5757; Fax: +82-2-312-6401 E-mail: jonghak@yonsei.ac.kr

Fig. S1. (a) Photograph of the PGMA-co-POEM comb-like copolymer, showing its adhesive property; (b) FT-IR spectra of monomers and the PGMA-co-POEM comb-like copolymer.

Fig. S2. (a) FT-IR spectra, (b) XRD patterns, and (c) TGA curves of UiO-66- NH_2 and pristine UiO-66 nanoparticles.

Fig. S3. (a) SEM and (b) TEM images of pristine UiO-66 nanoparticles.

Fig. S4. (a) N₂ adsorption–desorption isotherm and (b) pore-size distribution of pristine UiO-66 nanoparticles.

Fig. S5. (a) FT-IR spectra and (b) XRD patterns of PPUN membranes with different UiO-66-NH₂ loadings.

Fig. S6. DSC curve of the PPU-9.1 membrane.

Fig. S7. Cross-sectional SEM images of PPUN membranes: (a) PPUN-0, (b) PPUN-9.1, (c) PPUN-16.7, (d) PPUN-23.1, (e) PPUN-28.6, and (f) PPUN-33.3.

Fig. S8. SEM-EDX surface mapping of PPUN-28.6 membrane (Zr signal: orange, C signal: green, O signal: red).

	UiO-66-NH ₂	UiO-66	Copolymer-grafted UiO-66-NH ₂
BET surface area (m ² /g)	1001	1416	889
Micropore volume (cm ³ /g)	0.354	0.495	0.308

 Table S1. BET surface areas and micropore volumes of the MOFs studied.

* Micropore volume was calculated via the t-plot method.

Membrane	Permean	Selectivity	
	CO ₂	N2	CO_2/N_2
PPUN-0	51	1.1	46.3
PPUN-9.1	100	2.0	50.1
PPUN-16.7	278	8.3	33.5
PPUN-23.1	354	10.3	34.4
PPUN-28.6	488	15.3	31.9
PPUN-33.3	366	15.1	24.2
PPU-28.6	666	29.7	22.4

Table S2. Pure-gas separation performance of PPUN membranes, measured at 25 $^{\circ}$ C and 1 bar.

Membrane	Polymer concentration	Permeance (GPU)		Selectivity	
		CO ₂	N_2	CO ₂ /N ₂	
	2.5%	488	15.3	31.9	
PPUN-28.6	2%	962	29.1	33.1	
	1.7%	1320	42.9	30.8	

 Table S3. Gas separation performance of PPUN-28.6 membranes prepared with coating solutions of different concentrations.

MMM	Filler loading (wt%)	CO ₂ permeance (GPU)	CO ₂ /N ₂ selectivity	Test condition	Feed gas	Ref.
ZIF-8 /PVAm	13.1	297	83	1.1 MPa /25 °C	Mixed gas $(CO_2/N_2 = 15/85)$	[14]
UiO-66-NH ₂ /PVAm	28.5	1295	91	0.3 MPa /25 °C	Mixed gas (CO ₂ /N ₂ = 15/85), humidified	[22]
NH ₂ -ZIF-8 /polyamide (TFN)	N/A	1572	230	0.2 MPa /25 °C	Mixed gas $(CO_2/N_2 = 15/85),$ humidified	[36]
PEI-g-ZIF-8 /PVAm	16.7	1990	79.9	3 bar /25 °C	Mixed gas $(CO_2/N_2 = 15/85),$ humidified	[44]
ZIF-7 /Pebax	34	39	105	3.75 bar /20 °C	Pure gas	[45]
SiO ₂ /PEGDMA9	5	1290	27	350 kPa/ 35 °C	Pure gas	[46]

 Table S4. Gas separation performances of various reported MMMs.