Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Enhanced photoexcited carrier separation in CdS-SnS₂ heteronanostructures: A new 1D-0D visible photocatalytic system for hydrogen evolution reaction

Rama Krishna Chava*, Jeong-Yeon Do, Misook Kang**

Department of Chemistry, College of Natural Science, Yeungnam University,

280 Daehak-Ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea.

Corresponding Author's Address:

*Dr. Rama Krishna Chava (Email: <u>drcrkphysics@hotmail.com, rama@ynu.ac.kr</u>)

**Prof. Misook Kang (Email: mskang@ynu.ac.kr)

Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea.

Figure S1. FE-SEM images of synthesized photocatalyst samples, (a-c) CS-20, (d-f) CS-40, (g-i) CS-50 core-shell HNSs.

Figure S2. TEM images of (a-c) CS-20, (d-f) CS-40, (g-i) CS-50 HNSs core-shell HNSs.

Figure S3: Powder X-ray diffraction patterns of CdS and CdS-SnS₂ CSHNSs in the range of 24 °-30° demonstrating the left shift of (100), (002) and (101) planes after making heterostructures.

Figure S4: Digital images of as prepared CdS, CdS-SnS₂ and SnS₂ photocatalysts samples.

Sample	R _s (Ohm)	R _{ct} (Ohm)
CdS	3.019 x 10 ³	1.740 x 10 ⁵
SnS ₂	6.543 x 10 ²	3.788 x 10 ⁴
CS-30	5.011 x 10 ²	1.053 x 10 ⁴

Table S1: The EIS fitted parameters for the studied photocatalyst samples

Catalyst	Light source λ> 420 nm	H2 evolution rate (mmol.g ⁻¹ .h ⁻¹)	Quantum Efficiency	Ref.
CdS/CoO _x	350 W Xe lamp	3.5		S 1
CdS-Au/MoS ₂	150 W Xe lamp	7	27.85%	S 2
CdS-MoS ₂	300 W Xe lamp	49.80	41.37%	S 3
CdS-WS ₂		61.1	28.9%	S4
CdS-CdIn ₂ S ₄	300 W Xe lamp	0.823	1.2%	S 5
CdS- β-NiS	300 W Xe lamp	793.6 μ mol.h ⁻¹	74.11%	S 6
CdS-Co(OH) ₂	350 W Xe lamp	14.43		S 7
CdS-Pt	350 W Xe lamp	1.49 mmol. h ⁻¹	6.70%	S 8
CdS-MoS ₂	300 W Xe lamp	60.28	50.07%	S 9
CdS-MoS _x	300 W Xe lamp	404 µmol.h ⁻¹		S10
CdS-MoS ₂ -graphene	350 W Xe lamp	621.3 µmol.h ⁻¹	54.4%	S11
CdS-Pd		71.0		S12
CdS-MoS ₂	300 W Xe lamp	9.73	60.3%	S13
CdS-MoS ₂	300 W Xe lamp	12.38		S14
CdS-WS ₂ -MoS ₂	150 W Xe lamp	169.82	51.4%	S15
CdS-ZnO	300 W Xe lamp	9.618		S16
CdS-MoS ₂	300 W Xe lamp	10.85	22.0%	S17
CdS-g-C ₃ N ₄	300 W Xe lamp	44.450	46.3%	S18
CdS-g-C ₃ N ₄ -Ni(OH) ₂	300 W Xe lamp	0.115	16.7%	S19
CdS-SnS ₂	150 W Xe lamp	35.65	18.45%	This work

Table S2: Comparison of H₂ evolution activities of 1D CdS based heterostructures.

Figure S5: Electronic band structures of CdS and SnS₂ nanostructures.

References

- S1 Y. Liu, S. P. Ding, Y. Q. Shi, X. F. Liu, Z. Z. Wu, Q. Q. Jiang, T. F. Zhou, N. K. Liu and J. C. Hu, *Appl. Catal.*, *B*, 2018, 234, 109–116.
- S2 R. K. Chava, J. Y. Do and M. Kang, ACS Sustainable Chem. Eng., 2018, 6, 6445–6457.
- S3 X. –L. Yin, L. –L. Li, W. –J. Jiang, Y. Zhang, X. Zhang, L. –J. Wan and J. –S. Hu, ACS Appl. Mater. Interfaces, 2016, 8, 15258-15266.
- S4 J. He, L. Chen, Z.-Q. Yi, C.-T. Au and S.-F. Yin, *Ind. Eng. Chem. Res.*, 2016, 55, 8327–8333.
- S5 T. Wang, Y. Y. Chai, D. K. Ma, W. Chen, W. W. Zheng and S. M. Huang, *Nano Res.*, 2017, 10, 2699-2711.
- S6 S. D. Guan, X. L. Fu, Y. Zhang and Z. J. Peng, *Chem. Sci.*, 2018, 9, 1574–1585.
- S7 X. Zhou, J. Jin, X. J. Zhu, J. Huang, J. G. Yu, W. –Y. Wong and W. –K. Wong, *J. Mater. Chem. A*, 2016, 4, 5282–5287..

- S8 J. Jin, J. G. Yu, G. Liu and P. K. Wong, J. Mater. Chem. A, 2013, 1, 10927–10934.
- S9 X. -L. Yin, G.-Y. He, B. Sun, W.-J. Jiang, D.-J. Xue, A.-D. Xia, L.-J. Wan and J.-S. Hu, *Nano Energy*, 2016, 28, 319–329.
- S10 X. L. Fu, L. Zhang, L. H. Liu, H. Li, S. G. Meng, X. G. Ye, and S. F. Chen, J. Mater. Chem. A, 2017, 5, 15287–15293.
- S11 D. Lang, T.T. Shen and Q. J. Xiang, *ChemCatChem*, 2015, **7**, 943 951.
- S12 H. Park, D. A. Reddy, Y. J. Kim, S. H. Lee, R. Ma and T. K. Kim, *Chem. Eur. J.* 2017, 23, 13112-13119.
- S13 Y. Li, L. L. Wang, T. Cai, S. Q. Zhang, Y. T. Liu, Y. Song, X. Dong, and L. Hu, *Chem. Eng. J.*, 2017, **321**, 366–374.
- S14 C. Feng, Z. Y. Chen, J. Hou, J. Li, X. B. Li, L. K. Xu, M. X. Sun and R. C. Zeng, *Chem. Eng. J.*, 2018, 345, 404-413.
- S15 D. A. Reddy, H. Park, R. Ma, D. P. Kumar, M. Lim and T. K. Kim, *ChemSuSChem*, 2017, 10, 1563-1570.
- S16. S. Tso, W. S. Li, B. H. Wu and L. J. Chen, Nano Energy, 2018, 43, 270-277.
- S17. H. F. Lin, Y. Y. Li, H. Y. Li and X. Wang, *Nano Res.*, 2017, **10**, 1377-1392.
- S18 T.F. Wu, P. F. Wang, J. Qian, Y.H. Ao, C. Wang and J. Hou, *Dalton Trans.*, 2017, **46**, 13793–13801.
- S19 Z. P. Yan, Z. J. Sun, X. Liu, H. X. Jia and P. W. Du, *Nanoscale*, 2016, **8**, 4748-4756.