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Figure S1. Schematic illustration of (a) ECR plasma oxidation used to prepare CuxO@Cu foam and (b) the 

fabrication of the t-3D-Li metal electrode. 
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Figure S2. Top-view and cross-sectional images of Cu foam subjected to different surface treatments: (a) pristine Cu foam; CuxO@Cu foam prepared by (b) ECR O2 plasma 

treatment and (c) heat treatment. 
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Figure S3. Photographs of Cu foam and CuxO@Cu foam (a) before and (b) after Li impregnation at 280 °C. 
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Figure S4. Detailed hierarchical structures of (a) t-3D-Li metal and (b) e-3D-Li metal anodes. 
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Figure S5. XRD patterns of pristine Cu foam, CuxO@Cu foam, and Li2O@Cu foam. 
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Figure S6. (a) HAADF-STEM images of Li2O@Cu and (b) EELS analysis of the Li-K edge. (Note: The specimen was 

sputter-coated with Au/Pd to avoid damage and surface charge under the Ga+ ion beam.) 
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Figure S7. (a) Pore size distribution and (b) intrusion curve of Cu foam determined by Hg porosimetry. 
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Figure S8. Voltage profiles of Cu foam and Li2O@Cu foam recorded at a current density of 0.5 mA cm−2. 
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Figure S9. (a) Equivalent circuit curve for Nyquist plots of Li/Cu cells. (b, c, d) The corresponding Nyquist plots 

with frequency information at different cycle. 

 

  



11 

 

 

Figure S10. Top-view and cross-sectional images of t-3D-Li metal electrodes with different amounts of impregnated molten Li (measured in multiples/fractions of one bare Li foil 

with a diameter of 12 mm (0.03 g)). Images of Li2O@Cu foam impregnated using (a) one quarter, (b) one half, (c) one, (d) two Li foils and (e) excess Li. The CuxO@Cu foam sample 

had a width and length of 2 cm and a thickness of 300 µm. The cutoff voltage was set at 0.5 V. (Note: The gravimetric and volumetric capacity calculated by total weight and 

volume of t-3D-Li metal including the Cu foam exhibit specific capacities of 625.65 mAh g-1 and 1,435.85 mAh cm-3, respectively, shown in the green curve. Comparing theoretical 

capacity of pristine Li metal (2,061 mAh cm-3) with the volumetric capacity of the excessive Li impregnated t-3D-Li metal (1,435.85 mAh cm-3), we can know that the porosity of 

the Cu foam is 69.6%. As a standard areal capacity for electrochemial test, The areal capacity of 1.0 mAh cm-2 is corresponding to volumetric capacity of 33.33 mAh cm-3 owing 

to the thickness of Cu foam (here, i.e. 300 μm). Therefore, the volumetric capacity of 33.33 mAh cm-3 matches with pore occupation of 2.32% of  the t-3D-Li metal.)
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Figure S11. Configuration of the symmetric cell with (a) pristine Li and (b) 3D-Li metal for galvanostatic cycling. 
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Figure S12. Expanded voltage profiles (corresponding to blue dashed rectangles in Fig. 7) of symmetric cells 

comprising pristine Li and 3D-Li metal electrodes. 
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Table S1. Inherent coefficients of each materials for Shomate equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2. Thermodynamic parameters of each materials calculated by Shomate equation. 

 

  

(550K) Cu Li2O Cu2O CuO Molten Li 

A 17.72891 68.6971 59.42033 48.56494 32.46972 

B 28.0987 5.467149 37.84767 7.498607 -2.635975 

C -31.25289 23.18308 -26.45083 -0.05598 -6.327128 

D 13.97243 -9.495631 11.07609 0.013851 4.230359 

E 0.068611 -1.60244 -0.54218 -0.760082 0.005686 

F -6.056591 -625.0352 -191.7109 -173.4272 -7.117319 

G 47.89592 109.3928 151.0177 94.85128 74.29361 

H 0 -598.7304 -170.7072 -156.0632 2.380002 

 

Enthalpy 

(H, kJ/mol) 

Entropy 

(S, J/mol·K) 

Gibbs free energy 

(G550K, kJ/mol) 

Cu 6.4059 48.9125 -20.4960 

Li2O -544.4125 71.6612 -583.8268 

O2 7.6507 223.6550 -115.3596 

Cu2O -151.4258 132.0277 -224.0410 

CuO -145.4399 68.6776 -183.2126 

Liquid Li 7.6979 52.7193 -21.2977 
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Table S3. The determination of the spontaneity of the three kinds of chemical reactions based on difference of 

difference of Gibbs free energy. 

 

The spontaneity of a chemical reaction can be generally determined from the corresponding change of Gibbs 

free energy. In turn, Gibbs free energy is defined as H(T) − T × S(T), where H is enthalpy, T is absolute temperature, 

and S is entropy. The second law of thermodynamics implies that spontaneous phenomena are characterized by 

an increase of overall entropy (ΔS > 0), i.e., spontaneous reaction should feature negative changes of Gibbs free 

energy (ΔG < 0). To determine the Gibbs free energy of a certain material, one needs to know the corresponding 

enthalpy and entropy, which were herein calculated using the Shomate equation:[1] 

①  Enthalpy (H, kJ mol−1): , 

②  Entropy (S, J mol−1 K−1): , 

where t is temperature (K) divided by 1000, the shomate parameters are listed in Table S1 using a symbol of A, 

B, C, D, E, F, G and H. The calculated thermodynamic parameters are listed in Table S2. The ΔG values under our 

experimental conditions (T = 550 K) were determined from the standard Gibbs free energies of each material. As 

shown in Table S3, ΔG for a chemical reaction was defined as the difference between the sum of Gibbs free 

energies of all products and that of all reactants. Both the reduction of CuxO (x = 1, 2) and the oxidation of molten 

Li were characterized by negative ΔG values and were therefore spontaneous. 

  

 Formula △GRxn = ∑G550K(products) - ∑G550K(reactants) Value of △GRxn 

Rxn ① 
CuO + 2Liquid Li → Cu + Li2O 

△GRxn = [G(Cu)+G(Li2O)]-[G(CuO)+2G(Liquid Li)] -378.5141 

Rxn ② 
Cu2O + 2Liquid Li → 2Cu + Li2O 

△GRxn = [2G(Cu)+G(Li2O)]-[G(Cu2O)+2G(Liquid Li)] -358.1817 

𝑯𝟐𝟗𝟖.𝟏𝟓
𝒐 + 𝑨 ∗ 𝒕 +

𝑩𝒕𝟐

𝟐
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𝑪𝒕𝟑

𝟑
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𝑫𝒕𝟒

𝟒
−
𝑬

𝒕
+ 𝑭 −𝑯 

𝑨 ∗ 𝐥𝐧 𝒕 + 𝑩𝒕 +
𝑪𝒕𝟐

𝟐
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𝑪𝒕𝟑

𝟑
+

𝑬

𝟐𝒕𝟐
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Table S4. Electrochemical impedances simulated from equivalent circuit curve of Cu foil, Cu foam and Li2O@Cu 

foam. 

 

  
 Cu foil Cu foam Li2O@Cu foam 

 Re RI Re RI Re RI 

1st 3.077 17.983 3.214 6.439 3.232 7.326 

75th 3.328 11.17 3.183 3.295 3.016 2.272 

150th 19.14 21.6 3.200 5.364 3.044 2.878 
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Table S5. The specific values of Coulombic efficiency for each Cu substrates at higher current density of 1.0, 3.0 and 5.0 mA cm-2. 

Cycle 1st 10th 20th 30th 40th 50th 60th 70th 80th 90th 100th 

1.0 

mA/cm2 

Cu foil 91.7 % 90.6 % 92.0 % 89.3 % 77.3 % - - - - - - 

Cu foam 94.0 % 97.4 % 98.7 % 98.3 % 98.8 % 98.6 % 98.4 % 96.8 % 81.5 % - - 

Li2O 

@Cu foam 
94.0 % 98.3% 99.4 % 99.6 % 99.3 % 99.1 % 99.2 % 99.2 % 99.0 % 98.8 % 99.0% 

 

Cycle 1st 10th 20th 30th 40th 50th 60th 70th 80th 90th 100th 

3.0 

mA/cm2 

Cu foil 86.8 % 83.7 % 84.3 % 84.4 % 81.3 % 73.5 % - - - - - 

Cu foam 84.1 % 96.6 % 97.3 % 97.4 % 97.4 % 96.9 % 93.2 % 86.9 % 77.1 % - - 

Li2O 

@Cu foam 
88.4 % 96.0% 98.2 % 97.5 % 97.5 % 98.2 % 97.5 % 97.0 % 96.6 % 97.5 % 97.5% 

 

Cycle 1st 10th 20th 30th 40th 50th 60th 70th 80th 90th 100th 

5.0 

mA/cm2 

Cu foil 85.9 % 80.4 % 85.7 % 92.7 % 92.0 % 77.4 % - - - - - 

Cu foam 85.0 % 96.8 % 93.3 % 89.3 % 91.3 % 96.3 % 96.9 % 94.9 % 84.4 % - - 

Li2O 

@Cu foam 
87.1 % 96.2 % 98.0 % 96.8 % 96.0 % 96.7 % 97.2 % 97.4 % 95.7 % 97.5 % 97.5% 
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Table S6. The comparison of Coulombic efficiency of porous current collector for Li metal anode with previous 

literatures 

Porous scaffold Lithiophilic agent 

Current density 

(mA cm-2) 

Capacity 

(mAh cm-2) 

CE Cycle Reference 

Cu foam Li2O 

0.5 

1.0 

99.0 % 150 

This work 

1.0 99.0 % 100 

3.0 97.5 % 100 

5.0 97.5 % 100 

Cu foam 

- 

(Mechanical pressing) 

0.5 1.0 93.8 % 100 [2] 

Porous Cu foil 

X 

(Not Li impregnated) 

0.5 1.0 98.5 % 50 [3] 

Porous Cu foil 

X 

(Not Li impregnated) 

0.5 

1.0 97.0 % 

250 

[4] 

1.0 140 

Graphene flake 

X 

(Not Li impregnated) 

0.5 0.5 93.0 % 

50 [5] 

2.0 1.0 90.0 % 

Cu nanowire film 

X 

(Not Li impregnated) 

1.0 2.0 98.6 % 200 [6] 

Cu-CuO-Ni hybrid 

structure 
CuO 3.0 0.5 90.0 % 100 [7] 

Ni foam 

- 

(Mechanical pressing) 

1.0 1.0 85.0 % 100 [8] 

Graphene@Ni 

foam 

X 

(Not Li impregnated) 

0.5 

1.0 

98.0 % 

100 [9] 

1.0 92.0 % 

CuO nanosheets 

on Cu foil 
CuO 

0.5 

1.0 94.0 % 180 [10] 
1.0 
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