Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Hierarchical hybrid monolith: MoS_4^{2-} -intercalated NiFe layered double hydroxide nanosheet arrays assembled on carbon foam for highly efficient heavy metal removal

Yongchuang Wang,^{a,b} Yue Gu,^{a,b} Donghua Xie,^{a,b} Wenxiu Qin,^a Haimin Zhang,^a Guozhong Wang,^a Yunxia Zhang^{a,*} and Huijun Zhao^{a,c}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of

Sciences, Hefei 230031, China. ^b University of Science and Technology of China, Hefei 230026, P. R. China ^c Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia.

Fig. S1 (a) Compressive stress-strain curves of the 3D NiFe-MoS₄^{2–}-LDH/CF hybrid monolith at strain values of 20, 40, 60, 80%; (b) Digital photograph of the obtained 3D NiFe-MoS₄^{2–}-LDH/CF hybrid monolith after the bending and compressive treatments.

^{*} Correspondence Author. Email: <u>yxzhang@issp.ac.cn</u>

Fax: +86-551-65591434; Tel: +86-551-65592145

Fig. S2 FESEM image of NiFe-MoS₄²⁻-LDH in the absence of CF.

Fig. S3 Raman spectra of the obtained NiFe-MoS $_4^{2-}$ -LDH/CF and pure (NH $_4$) $_2$ MoS $_4$.

	L	Langmuir model			Freundlich model		
ions	Q _{max} (mg/g)	K _L (L/mg)	R ²	$K_F(mg/g)$	1/n	R ²	
Hg ²⁺	462.08	0.0849	0.9994	139.27	0.3059	0.9389	
Pb ²⁺	298.73	0.0561	0.9953	60.83	0.2872	0.9074	
Cu ²⁺	127.56	0.0383	0.9911	26.88	0.2241	0.9354	

Table S1 Langmuir and Freundlich isotherm parameters for Cu^{2+} , Pb²⁺ and Hg²⁺ on NiFe-MoS₄²⁻-LDH/CF.

Target	Adsorbents	Initial	Adsorbent	Removal	Time of sorption	References
ions		concentration	dosage	efficiency	equilibrium	
		(ppm)	(g/L)	(%)	(min)	
Hg ²⁺	LHMS-1	0.0637	0.5	96.9	30	1
	KMS-1	0.116	1	99.8	40	2
	KMS-2	885.8	~	99.9	180	3
	MoS ₄ -LDH	27.1	1.17	99.8	60	4
	Fe-MoS ₄	200	1	99	120	5
	mercaptosuccinic	100	~	99	60	6
	acid-LDH					
	Active carbon	20	~	91.85	105	7
	NiFe-MoS ₄ ^{2–} -LDH/CF	10	0.5	99.9	20	This work
Pb ²⁺	Mg ₂ Al-LS-LDH	50	0.5	72.8	120	8
	Fe-MoS ₄	200	1	99	120	5
	MoS ₄ -LDH	19.2	1.17	99.7	30	4
	Modified alkaline	1-30	1	95	100	9
	lignin					
	KMS-1	0.061	1	99.8	120	2
	TCAS-LDHs	50	0.5	93.9	120	10
	NiFe-MoS ₄ ^{2–} -LDH/CF	10	0.5	99.9	20	This work
Cu ²⁺	Mg ₂ Al-LS-LDH	50	0.5	47	120	8
	nano-alumina	80	4	61.25	30	11
	Fe-MoS ₄	200	1	54	120	5
	MoS ₄ -LDH	20.3	1.17	99.9	120	4
	MGL	80	3.5	7.86	240	12
	MNP-NH ₂	2-10	0.1	27-75	5	13
	TCAS-LDHs	50	0.5	60.3	120	10
	NiFe-MoS ₄ ^{2–} -LDH/CF	10	0.5	99	30	This work

Table S2 Comparison of sorption kinetic parameters of various adsorbents.

Fig. S4 (a) Adsorption kinetics of Hg²⁺ with different initial concentration; (b) the corresponding fitting curves via pseudo-second-order kinetics model. Experimental condition: 0.5 g/L of sorbent dosage, pH value 6.0, and temperature 298 K.

Fig. S5 The removal rate of Hg^{2+} with various initial concentrations on NiFe-MoS₄²⁻-LDH/CF and Mo concentration in the filtrations after adsorption.

Fig. S6 XRD patterns of NiFe-MoS $_4^{2-}$ -LDH/CF before and after Hg $^{2+}$ adsorption as well as the regenerated sample after 5 cycles.

After adsorption

Fig. S7 SEM images and corresponding EDS element mappings of NiFe-MoS₄^{2–}-LDH/CF during adsorption-regeneration cycles.

Fig. S8 The real-time flow rate in the fixed bed adsorption experiment.

Table S3 Parameters of the Thomas model in the column studies.

Factors	Q (mL min ⁻¹)	Initial	K _{TH}	R ²	q ₀ (mg g ⁻¹)
		concentration	(mL min ⁻¹ mg ⁻¹)		
Flow rate	1	5 ppm	0.0030	0.9994	45.95
	2	5 ppm	0.0058	0.9988	44.01
	4	5 ppm	0.0141	0.9983	36.57
Initial	1	0.2 ppm	0.0137	0.9993	8.664
concentration					
	1	1 ppm	0.0035	0.9921	31.72
	1	5 ppm	0.0030	0.9994	45.95

Fig. S9 FT-IR spectrum of NiFe-MoS $_4^{2-}$ -LDH/CF after the uptake of various heavy metal ions.

Fig. S10 Raman spectra of NiFe-MoS₄²⁻-LDH/CF before and after Hg²⁺ adsorption as well as the regenerated sample.

Table S4 The atomic percentages of Ni, Fe, Mo, S and Hg on NiFe-MoS₄^{2–}-LDH/CF solid treated by different concentration of Hg^{2+} solution.

	Ni (at%)	Fe (at%)	Mo (at%)	S (at%)	Hg (at%)
Before adsorption	15.92	5.38	2.16	8.71	~
1 ppm Hg	15.89	5.37	2.15	8.69	0.04
10 ppm Hg	15.76	5.32	2.11	8.62	0.14
100 ppm Hg	15.66	5.28	2.06	8.37	0.66
500 ppm Hg	15.42	5.27	1.67	7.13	1.82

Notes and references

- 1 M. J. Manos, V. G. Petkov and M. G. Kanatzidis, Adv. Funct. Mater., 2009, 19, 1087–1092.
- 2 M. J. Manos and M. G. Kanatzidis, Chem. Eur. j., 2009, 15, 4779–4784.
- 3 Z. H. Fard, C. D. Malliakas, J. L. Mertz and M. G. Kanatzidis, Chem. Mater., 2015, 27, 1925–1928.
- 4 L. Ma, Q. Wang, S. M. Islam, Y. Liu, S. Ma and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2016, **138**, 2858–2866.
- 5 A. Jawad, Z. Liao, Z. Zhou, A. Khan, T. Wang, J. Ifthikar, A. Shahzad, Z. Chen and Z. Chen, *ACS Appl. Mater. Interfaces*, 2017, **9**, 28451–28463.
- 6 H. Nakayama, S. Hirami, M. Tsuhako, J. Colloid. Interf. Sci., 2007, 315, 177–183.
- 7 K. Kadirvelu, M. Kavipriya, C. Karthika, N. Vennilamani and S. Pattabhi, Carbon, 2004, 42, 745–752.
- 8 G. Huang, D. Wang, S. Ma, J. Chen, L. Jiang and P. Wang, J. Colloid. Interf. Sci., 2015, 445, 294–302.
- 9 Q. Wang, C. Zheng, Z. Shen, Q. Lu, C. He, T. C. Zhang and J. Liu, *Chem. Eng. J.*, 2019, **359**, 265–274.
- 10 G. Huang, L. Jiang, D. Wang, J. Chen, Z. Li and S. Ma, J. Mol. Liq., 2016, 220, 346–353.
- 11 R. Wang, W. Zhang, L. Zhang, T. Hua, G. Tang, X. Peng and M. Hao, *Environ. Sci. Pollut. R.*, 2019, **26**, 1595–1605.
- 12 Q. Q. Huang, Y. Chen, H. Q. Yu, L. G. Yan, J. H. Zhang, B. Wang, B. Du and L. T. Xing, *Chem. Eng. J.*, 2018, **341**, 1–9.
- 13 Y. M. Hao, M. Chen and Z. B. Hu, J. Hazard. Mater., 2010, 184, 392–399.