Supporting Information

Competing with other polyanionic cathode materials for potassium-ion batteries via fine structure design: A new layered KVOPO₄ with a tailored particle morphology

Jiaying Liao, Qiao Hu, Bo Che, Xiang Ding, Fei Chen, Chunhua Chen*

CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, China

Corresponding authors: E-mail: cchchen@ustc.edu.cn; Phone: +86-551-63606971; Fax: (+86)551-63601592.

Precursor (in 50 ml H ₂ O)		Products	Morphology	
2mmol VO ₂ , 5mmol H ₂ SO ₄	6mmol KH ₂ PO ₄	K _{0.5} VOPO ₄ ·1.5H ₂ O	bulk	
2mmol VO ₂ , 5mmol H ₂ SO ₄	6mmol K₂HPO₄·3H₂O	K _{0.5} VOPO ₄ ·1.5H ₂ O	nanosheets	
2mmol VO ₂ , 5mmol H ₂ SO ₄	3mmol K₂HPO₄·3H₂O,	K _{0.5} VOPO ₄ ·1.5H ₂ O	flower-like	
	3mmol K₃PO₄·3H₂O		micro-sphere	
2mmol VO ₂ , 5mmol H ₂ SO ₄	6mmol K ₃ PO ₄ ·3H ₂ O	blue gel	-	
4mmol VO ₂ , 10mmol H ₂ SO ₄	12mmol K ₂ HPO ₄ ·3H ₂ O	K ₂ (VO) ₂ (HPO ₄) ₃ ·1.125H ₂ O	rod	

Table S1. The hydrothermal conditions and results.

Fig. S1. SEM images of hydrothermal products: (a) bulk; (b) nanosheets; (c) micro-sphere.

Fig. S2. N₂ adsorption-desorption isotherms KVOP samples.

Fig. S3. XRD patterns of hydrothermal products (a) and KVOP-NS at different stages of the synthetic process (b).

Fig. S4. (a) XRD and Rietveld refinement of the KVOP-NS (P4₂mc). (b) Representation of α_{II} -KVOPO₄ structure (The K position was not accurately refined due to the large relative errors).

Fig. S5. Charge-discharge curves of the selected cycles of KVOP samples in 0.5 M KPF₆-PC/FEC (1/1, v/v) at a current density of 0.5C (1C=120 mAh/g): (a) KVOP-B; (b) KVOP-NS; (C) KVOP-MS.

Fig. S6. SEM images of KVOP samples after cycling: (a) KVOP-B, (b) KVOP-NS, (c) KVOP-MS.

Fig. S7. (a) Charge-discharge curves of the selected cycles of KVOP-NS in 0.5 M KPF₆-PC/FEC (9/1, v/v) at a current density of 0.5C; (b) Comparison of cycling performance of KVOP-NS in 0.5 M KPF₆-PC/FEC (1/1) and 0.5 M KPF₆-PC/FEC (9/1); (c) Charge-discharge curves of the selected cycles of KVOP-NS in 7 M KFSI-DME at a current density of 0.5C; (d) Comparison of the initial charge-discharge profiles in 0.5 M KPF₆-PC/FEC (1/1) and 7 M KFSI-DME.

Fig. S8. CV curves of potassium half cells using aluminum foil as counter electrode in different electrolytes from 2.0 to 5.0 V at a scan rate of 0.1 mV s^{-1} .

Fig. S9. Charge-discharge curves of the selected cycles of $K_{0.5}VOPO_4 \cdot 1.5H_2O$ (a) and $KVOPO_4 \cdot H_2O$ (b) nanosheets in 0.5 M KPF₆-PC/FEC (1/1, v/v) at a current density of 0.5C.

Fig. S10. Ex-situ XRD patterns of KVOP-NS after the 1st and 2nd cycles (a) and KVOP samples after 100 cycles (b).

Table S2. The detailed information of electrochemical section of various polyanionic cathodes in PIBs.

Composition	Electrolyte	Current	Voltage	Cycle stability	Initial	Refere
		collector	range		CE	nces
KVPO ₄ F	0.7 M KPF ₆ -EC/DEC	Al	3.0-5.0 V	75% (30 cycles)	73%	[8]
K ₂ [(VO) ₂ (HPO ₄	0.1 M KClO ₄ -PC	Al	2.0-4.6 V	83% (200 cycles)	79%	[11]
$)_{2}C_{2}O_{4}]$						
α-KVOPO ₄	0.7 M KPF ₆ -EC/DEC	Al	2.0-4.8 V	~100% (50 cycles)	46%	[26]
	1 M KPF ₆ -PC		2.0-5.0 V	-	64%	
KFeSO ₄ F	0.1 M KClO ₄ -PC	Al	2.0-4.5 V	-	86%	[37]
FePO ₄	1 M KPF ₆ -EC/EMC	Al	1.5-3.5 V	80% (50 cycles)	-	[38]
K ₃ V ₂ (PO ₄) ₃	0.8 M KPF ₆ -EC/DEC	Cu	2.5-4.3 V	96% (100 cycles)	70%	[39]
KVP ₂ O ₇	0.5 M KPF ₆ -EC/DEC	Al	2.0-5.0 V	83% (100 cycles)	71%	[40]
K ₃ V ₂ (PO ₄) ₂ F ₃	1 M KPF ₆ -EC/PC	Al	2.0-4.6 V	97% (100 cycles)	73%	[41]
Layered	0.5 M KPF ₆ -PC/FEC	Al	2.0-4.6 V	87% (100 cycles)	91%	This
KVOPO ₄	(1/1, v/v)					work