Supporting Information

Two-dimensional NiPS₃ for flexible humidity sensors with high selectivity

Ramesh Naidu Jenjeti, Rajat Kumar and S Sampath* Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India E-mail: sampath@iisc.ac.in

Contents

Page

1. Schematic diagram of the humidity sensor setup	S2
2. Structural representation of MoS ₂ , graphene and their SEM images	S3
3. BET adsorption – desorption isotherms of bulk and few-layer $NiPS_3$	S4
4. Atomic force microscopic (AFM) image of single layer NiPS ₃	S5
5. I-V profiles of NiPS ₃ obtained at different relative humidity (RH) levels	S5
6. Atomic force microscopic images of thin film NiPS ₃ , MoS ₂ and Graphene	S6
7. Response vs recovery time at constant humidity	S7
8. Stability of few-layer NiPS ₃ humidity sensor over storage time	S 8
9. Thickness dependent humidity sensing performance of restacked few-layer $NiPS_3$	S9
10. Humidity Sensing behavior of bulk NiPS ₃ device	S10
11. Cycling stability performance of bulk NiPS ₃	S11
12. Current response of the flexible device to RH of the breath exhaled from nasal cavity	S12
13. Response vs recovery at constant humidity with glove wearing hand	S13
14. Water contact angle data on NiPS ₃ film	S14
15. Comparison of the present data with the literature reports	S15-16

Figure S1. Schematic diagram of humidity sensor setup.

Figure S2. Structural representation of (a) MoS_2 along with the (b) scanning electron microscopic (SEM) images of bulk and few-laye MoS_2 and (c) graphene along with the (d) SEM image.

Figure S3. BET adsorption – desorption isotherms of bulk and few-layer NiPS₃. BET measurements are carried out in N_2 atmosphere and at 77K temperature.

Figure S4. Atomic force microscopic (AFM) image of single layer NiPS₃ and corresponding height profile (inset).

Figure S5. (a) I-V profiles of NiPS₃ obtained at different relative humidity (RH) values. (b) log(R) vs RH.

Figure S6. Atomic force microscopic images of thin films a) $NiPS_3$, b) MoS_2 and c) Graphene along with corresponding height profiles.

Figure S7. (a) Response vs recovery time at low humidity (RH of 0% to 32%); (b, c) denote high humidity response and recovery between RH of 0% to 90%.

Figure S8. Stability of few-layer NiPS₃ humidity sensor over storage time for various humidity levels.

Figure S9. Thickness dependent humidity sensing performance of restacked few-layer NiPS₃ films of various thicknesses (\sim 100nm, \sim 500nm and \sim 1000nm) and bulk crystal.

Figure S10. (a) I-V profiles obtained for the device based on bulk NiPS₃ at different relative humidity (RH) values (b) Resistance (R) vs RH at different ranges of humidity; (c) Log(R) vs RH, (d) Responsivity ($\Delta R/R$) vs. RH of bulk NiPS₃.

Figure S11. Response of bulk NiPS₃ based sensor between dry air and 99% RH.

Figure S12. Current response to RH of the breath exhaled from the nasal cavity in both flat and bent configurations.

Figure S13. Response of the sensor for glove wearing hand. The base current is due the ambient humidity in the laboratory.

Figure S14. Water contact angle data on NiPS₃ film (80°).

Table S1. Comparison of humidity sensing performance obtained using NiPS₃ with other reported 2D materials.

Material	Sensing technique	Response time (s)	Recovery time (s)	Response	Reference
VS ₂	Resistive	30-40	12-50	30 (ΔR/R)	<i>Adv. Mater.</i> 2012 , 24 , 1969.
MoS ₂	Resistive	9	17	150 (ΔR/R)	Nanotech. 2014, 14, 8518.
MoS ₂	FET	10	60	-	<i>Adv. Mater.,</i> 2017 , <i>1702076.</i>
MoS ₂ /GO	Resistive	43	37	~900 (\Delta R/R)	<i>RSC Adv.</i> 2016 , <i>6</i> , 57424.
MoS ₂ /SnO ₂	Capacitive	5	13	3285000% (ΔC/C)	ACS Appl. Mater. Inter. 2016 , 8, 14142.
WS ₂	Resistive	13	17	3750 (ΔR/R)	Nanotech. 2016, 27, 475503.
WS ₂	Resistive	5	6	2357 (R _{20%} /R _{90%})	Nanoscale 2017, 9, 6246.
WS ₂ nanoparticle	Resistive	12	13	$\sim 475 \ (\Delta R/R)$	ACS Appl. Mater. Inter. 2016, 8, 3359
SnS ₂	Resistive	67	5	-	<i>RSC Adv.</i> 2016 , <i>6</i> , 105421.
SnSe ₂	Resistive	74	30	-	<i>Chem. Select</i> 2016 , <i>1</i> , 5380.
GO	Impedance	0.03	0.03	-	ACS Nano 2013, 7, 11166-11173.
GO	Resistive	~5	~6	120000 (Δl/l)	<i>IEEE Trans. on</i> <i>Nanotech.</i> 2015 , <i>14</i> , 931.
GO	Capacitive	10.5	41	37757 (ΔC/C)	<i>Sci. Rep.</i> 2013 , <i>3</i> , 2714.
GO	Piezoelectric	19	10	79.3(ΔV/RH%)	Sens. Act., B 2012, 161, 1053.

GO	Capacitive	2.7	4.6	4450544 (ΔC/C)	<i>Nanoscale</i> 2018 , <i>10</i> , 5599.
GO/polyelectrolyte	Capacitive	-	-	265640 (ΔC/C)	<i>Sens. Act., B</i> 2014 , 203, 263.
Graphene	Resistive	0.6	0.4	0.31(ΔR/R% ΔRH)	Nanoscale, 2015 , 7, 19099–19109.
rGO	Resistive	28	48	0.043 (logZ/RH%)	<i>Sens. Act., B</i> 2014, 200, 9.
BP	Resistive	255	10	99.17 (ΔR/R)	<i>Micropor. Mesopor.</i> <i>Mat.</i> , 2016 , 225, 494.
BP	Capacitive	4.7	3.0	507825 (ΔC/C)	Nanoscale 2018 , 10, 5599.
NiPS ₃	Resistive	~1-2	~2-3	1.5 X 10 ⁶	Present study
				$(\Delta R/R)$	