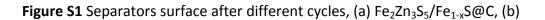
Electronic Supporting Information

Iron-Zinc Sulfide $Fe_2Zn_3S_5/Fe_{1-x}S@C$ Derived from Metal-organic

Framework as a High Performance Anode Material for Lithium-Ion

Battery


Jun-chao Zheng¹, Ying-ying Yao¹, Gao-qiang Mao¹, He-zhang Chen^{1,2}, Hui Li ¹, Liang Cao¹, Xing Ou¹, Wan-jing Yu¹, Zhi-ying Ding³, Hui Tong^{1,*}

- 1. School of Metallurgy and Environment, Central South University, Changsha, 410083, P.R. China
- 2. School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- 3. School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China

*Correspondence: huitong@csu.edu.cn (Hui Tong)

Table 1: carbon and sulfur analysis and ICP results		
	element	Content (wt%)
	С	5.46
	S	35.70
	Fe	31.24
	Zn	27.60

(a) This sample (b) Contrast sample (c) Contrast

 $Fe_2Zn_3S_5/Fe_{1-x}S$

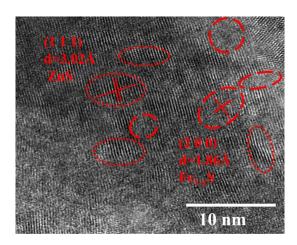


Figure S2 HRTEM images of Fe₂Zn₃S₅/Fe_{1-x}S@C composite charged to 3.0 V after

three cycles.

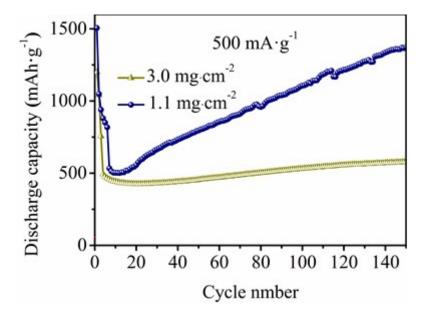


Figure S3 Electrochemical performance with different mass.