Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Material for:

Three-Dimensional Multilevel Nanoporous NiCoO₂/Ni Hybrid for Highly Reversible

Electrochemical Energy Storage

Binbin Liu,^a Jiagang Hou,^b Tingting Zhang,^a Caixia Xu,^{a*} and Hong Liu^{ac*}

^aCollaborative Innovation Center of Technology and Equipement for Biological Diagnosis and Therapy in

Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan,

250022, P. R. China

^bQilu University of Technology (Shandong Academy of Sciences)

Jinan 250353, Shandong Province, P. R. China

^cState Key Laboratory of Crystal Materials, Shandong University

Jinan 250100, P. R. China

Fax: +86-531-82767033; Tel: +86-531-82767033

E-mail: chm_xucx@ujn.edu.cn; hongliu@sdu.edu.cn

Fig. S1. EDS data of the Ni₁₀Co₅Al₈₅ precursor alloy.

Fig. S2. The N2 adsorption-desorption isotherms and BJH pore size distribution curves of the NiCoO2/Ni hybrid after etching the

Ni10Co5Al85 alloy.

Fig. S3. SEM images of the dealloyed samples at different corrosion times for (a) 0.1 h, (b) 2 h, (c) 12 h, and (d) 48 h, respectively.

Fig. S4. EDS data of the NiCoO₂/Ni product upon dealloying for 24 h.

Time	Ni K	Co K	AI K
(h)	(Atomic/Weight %	%) (Atomic/Weight %	%) (Atomic/Weight %)
0.1	54.26/60.57	26.25/29.42	19.49/10.01
2	56.91/61.07	30.21/32.56	12.88/6.37
12	58.72/62.58	29.65/31.72	11.63/5.70
24	64.92/65.89	32.12/32.73	2.96/1.38
48	65.08/65.93	32.30/32.85	2.62/1.22

Fig. S5. EDS data of the products with different dealloying times.

Fig. S6. EDS elemental mapping of the $NiCoO_2/Ni$ hybrid.

Fig. S7. XRD pattern of the dealloyed product annealed at 600 °C for 2 h. The standard patterns of NiCoO₂ (JCPDS 10-0188) and Ni (JCPDS 65-0380) are included for comparison.

Fig. S8. (a) XPS data for NiCoO₂/Ni, (b) high-resolution XPS for the O 1s in NiCoO₂/Ni hybrid.

Fig. S9. TEM images of the NiCoO2/Ni hybrid after 5000 CV cycles.

Fig. S10. (a&b) CV curves (50 mV s⁻¹) of the NiCoO₂/Ni electrode with different cycles as indicated.

Fig. S11. XPS date of the NiCoO₂/Ni hybrid after 200 CV cycles.

Fig. S12. (a) CV curves, (b) GCD curves, (c) specific capacitance at different current densities of the AC anode, (d) specific capacitance of different electrodes with various mass loading.

Fig. S13. (a) CV curves of AC and NiCoO₂/Ni electrodes, (b) CV curves, (c) GCD curves of the ASC at different potential windows, (d) Specific capacitance at different potential windows.