Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

1	Supporting Information		
2			
3	Highly Efficient CsPbIBr ₂ Perovskite Solar Cells with Efficiency Over 9.8% Using Preheating-		
4	Assisted Spin-Coating Method		
5	Yuxiao Guo, Xingtian Yin*, Jie Liu and Wenxiu Que*		
6	Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International		
7	Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials		
8	and Devices, School of Electronic & Information Engineering, Xi'an Jiaotong University, Xi'an		
9	710049, Shaanxi, People's Republic of China		
10	*Corresponding author: xt_yin@mail.xjtu.edu.cn (X. Yin) wxque@mail.xjtu.edu.cn (W. Que)		
11			
12			
13			

14

15 Fig. S1 Optical images of CsPbIBr₂ films formed at different substrate preheating temperatures.

16

- 17 Fig. S2 Large-scale top-view SEM images of CsPbIBr₂ films formed at different substrate preheating
- 18 temperatures, the scale bar is $10 \ \mu m$.

1

2 Fig. S3 XRD patterns of CsPbIBr₂ films formed at different substrate preheating temperatures.

3

4 Fig. S4 XPS survey spectra of CsPbIBr₂ films formed at RT and a substrate preheating temperature of

5 60 °C, respectively.

6

1 Fig. S5 (a) Cs 3d, (b) Pb 4f, (c) I 3d and (d) Br 3d XPS core spectra of CsPbIBr₂ films formed at RT

2 (below) and a substrate preheating temperature of 60 °C (above), respectively.

3

4 Fig. S6 SPV measurements of CsPbIBr₂ films formed at RT and a substrate preheating temperature of

5 60 °C, respectively.

6

Fig. S7 Energy level diagrams of the devices based on CsPbIBr₂ films formed at RT and a substrate
 preheating temperature of 60 °C, respectively. The dot line indicates the fermi level of

9 perovskites.

10

11 Fig. S8 Cross-sectional SEM image without color of the corresponding PSC structure.

2 Fig. S9 Statistic PCEs distributions of 15 independent cells over CsPbIBr₂ formed at different substrate

4

1

5 Fig. S10 J-V curves of the champion cells over CsPbIBr₂ formed at different substrate preheating
6 temperatures.

7

9

8 Table S1 Photovoltaic parameters of the champion devices over CsPbIBr₂ formed at different substrate

preheating temperatures. Substrate preheating $V_{oc}(V)$ J_{sc} (mA cm⁻²) FF PCE (%) temperature RT 9.88 1.165 0.63 7.29 40 °C 10.55 1.162 0.63 7.70 60 °C 9.86 10.92 1.267 0.71 80 °C 10.94 1.125 0.69 8.44

10

11 **Table S2** The reported parameters of the cells over pure CsPbIBr₂ perovskite (measured under RS).

Cell structure	Perovskite fabrication method	$V_{oc}\left(V ight)$	PCE (%)	Ref.
FTO/TiO ₂ /SmBr ₃ /CsPbIBr ₂ / Spiro- OMeTAD/Au	One-step spin coating	1.170	10.88	1
FTO/TiO ₂ (CsBr)/CsPbIBr ₂ /Carbon	One-step spin coating & Intermolecular exchange	1.261	10.71	2
	One-step spin coating	1.171	5.49	
FTO/c-TiO ₂ /CsPbIBr ₂ /Carbon	One-step spin coating & Intermolecular exchange	1.245	9.16	3
FTO/NiO _x /CsPbIBr ₂ /MoO _x /Au	One-step spin coating	0.850	5.52	4
FTO/c-TiO ₂ /CsPbIBr ₂ / Spiro-OMeTAD/Au	One-step spin coating (Gas- assisted)	1.227	8.02	5
FTO/c-TiO ₂ /CsPbIBr ₂ /Au	Dual source evaporation	0.959	4.7	6
ITO/SnO ₂ /C ₆₀ /CsPbIBr ₂ / Spiro-OMeTAD/Au	One-step spin coating (Antisolvent: chlorobenzene)	1.180	7.34	7
ITO/SpO /CaDbIDr /	One-step spin coating	1.165	7.29	This
Spiro-OMeTAD/Ag	One-step spin coating (Preheating-assist)	1.267	9.86	work
ITO/In ₂ S ₃ /CsPbIBr ₂ / Sprio-OMeTAD/Au	One-step spin coating	1.090	5.59	8
	One-step spin coating	1.114	5.82	
FTO/c-TiO ₂ / CsPbIBr ₂ /Carbon	One-step spin coating (Light Processing)	1.283	8.60	9
ITO/SnO ₂ /CsPbIBr ₂ /Carbon	One-step spin coating	1.230	7.00	10
	One-step spin coating	1.100	6.36	
/spiro-OMeTAD/Au	One-step spin coating (PEG-passivation)	1.280	7.31	11
FTO/c-TiO ₂ /CsPbIBr ₂ /carbon	One-step spin coating (Precursor aging)	1.142	6.55	12
FTO/c-TiO ₂ /m-TiO ₂ / CsPbIBr ₂ /Spiro-OMeTAD/Au	Two-step solution (Spraying assist)	1.127	6.3	13
FTO/c-TiO ₂ /m-TiO ₂ / CsPbIBr ₂ /Carbon	Two-step solution	1.080	8.25	14
FTO/c-TiO ₂ /m-TiO ₂ / CsPbIBr ₂ /Carbon	Two-step solution	0.960	6.14	15

1

2

3 Fig. S11 J-V curves of cells measured under both forward and reverse scan directions.

4

5 Table S3 Summary of the electrochemical impedance spectra (EIS) parameters analyzed in Fig. 4g
6 with fitting the Nyquist plots.

Substrate preheating temperature	$R_{s}\left(\Omega\right)$	Transport resistance $(R_{tr})(\Omega)$	Recombination resistance $(R_{rec})(\Omega)$
RT	8.6	1140	260
60 °C	6.7	1835	3250

7

8

9 Fig. S12 The morphological evolution of the CsPbIBr₂ films formed at (a) RT and (b) a substrate
10 preheating temperature of 60 °C, respectively, under an ambient atmosphere of ~25 °C and
11 ~35% RH. Insets are pictures of the corresponding perovskite films, and the scale bar is 2
12 μm.

1 References

- 2 1. W. S. Subhani, K. Wang, M. Du, X. Wang and S. Liu, Adv. Energy Mater., 2019, 9, 1803785.
- 3 2. W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, C. Zhang and Y. Hao, *ChemSusChem*, 2019, **12**, 2318-2325.
- 5 3. W. Zhu, Q. Zhang, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang and Y. Hao, *Adv. Energy Mater.*, 2018, 8, 1802080.
- 7 4. C. Liu, W. Li, J. Chen, J. Fan, Y. Mai and R. E. I. Schropp, Nano Energy, 2017, 41, 75-83.
- 8 5. W. Li, M. U. Rothmann, A. Liu, Z. Wang, Y. Zhang, A. R. Pascoe, J. Lu, L. Jiang, Y. Chen, F.
- 9 Huang, Y. Peng, Q. Bao, J. Etheridge, U. Bach and Y.-B. Cheng, *Adv. Energy Mater.*, 2017, 7,
 10 1700946.
- Q. Ma, S. Huang, X. Wen, M. A. Green and A. W. Y. Ho-Baillie, *Adv. Energy Mater.*, 2016, 6,
 1502202.
- 13 7. N. Li, Z. Zhu, J. Li, A. K. Y. Jen and L. Wang, Adv. Energy Mater., 2018, 8, 1800525.
- 14 8. B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Nano Energy, 2019, 57 718-727.
- Q. Zhang, W. Zhu, D. Chen, Z. Zhang, Z. Lin, J. Chang, J. Zhang, C. Zhang and Y. Hao, ACS
 Appl. Mater. Interfaces, 2018, 11, 2997-3005.
- 17 10. Z. Guo, S. Teo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase and T. Ma, *J. Mater. Chem. A*, 2019, 7,
 18 1227-1232.
- 19 11. J. Lu, S.-C. Chen and Q. Zheng, ACS Appl. Energy Mater., 2018, 1, 5872-5878.
- 20 12. W. Zhu, Q. Zhang, C. Zhang, Z. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang and Y. Hao, ACS
 21 Appl. Energy Mater., 2018, 1, 4991-4997.
- 22 13. C. F. J. Lau, X. Deng, Q. Ma, J. Zheng, J. S. Yun, M. A. Green, S. Huang and A. W. Y. Ho-
- 23 Baillie, ACS Energy Lett., 2016, 1, 573-577.
- 24 14. J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, L. Ma, J. Liu and Z. Jin, J. Am. Chem. Soc.,
- 25 2017, **139**, 14009-14012.
- 26 15. J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L. K. Ono and Y. Qi, *Adv. Energy* 27 *Mater.*, 2018, 8, 1800504.
- 28 16. J. Lin, M. Lai, L. Dou, C. S. Kley, H. Chen, F. Peng, J. Sun, D. Lu, S. A. Hawks, C. Xie, F. Cui,
- 29 A. P. Alivisatos, D. T. Limmer and P. Yang, Nat. Mater., 2018, 17, 261-267.