Supporting Information

Title

In-situ Incorporation of Nanostructured Antimony in N-doped Carbon Matrix for Advanced Sodium-Ion Batteries

Author names and affiliations

Zhibin Wu^{ab}, Bernt Johannessen^c, Wenchao Zhang^a, Wei Kong Pang^a, Jianfeng Mao^a, Hua Kun Liu^a, Zaiping Guo^{ab*}

^aInstitute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
^bSchool of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
^cAustralian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia

*Corresponding Author

Zaiping Guo

Distinguished Professor, Australian Research Council (ARC) Future Fellow (FT3) Associate Editor, ACS Applied Materials & Interfaces School of Mechanical, Materials, Mechatronic, and Biomedical Engineering Institute for Superconducting & Electronic Materials Faculty of Engineering & Information Sciences University of Wollongong, NSW 2522 T + 61 2 4221 5225 F + 61 2 4221 5731 E-mail: zguo@uow.edu.au **Figure S1** XRD patterns of samples obtained by annealing Sb(Ac)₃ at different temperature of (a) 150 °C, (b) 250 °C, (c) 350 °C, (d) 450 °C and (e) 700 °C under Ar atmosphere for 2 h. # represents the peaks belong to Sb₂O₃ (JCPDS no. 72-1334) while * represents the peaks belong to Sb₂O₃ (JCPDS no. 71-0383).

Figure S2 Raman spectroscopy of samples obtained from annealing Sb(Ac)₃ at 350 °C and 450 °C for 2 h, respectively.

Figure S3 XRD patterns of Sb/C composite (G/N = 0.25/0.25) prepared at 450 °C, 700 °C and 950 °C for 2 h, respectively.

Figure S4 (a) TGA curves measured in air and (b) Full-survey-scan XPS patterns of $\underline{Sb@G_{0.25}N_{0.25}-450}$, $\underline{Sb@G_{0.25}N_{0.25}-700}$ and $\underline{Sb@G_{0.25}N_{0.25}-950}$.

Figure S5 Three-dimensional carbon sheets bubble generated by sugar-blowing strategy involving the thermal decomposition of the well-mixed glucose and NH_4Cl at 950 °C for 2 h in Ar atmosphere.

Figure S6 SEM images of Sb/C composite prepared at different temperature of 450, 700 and 950 °C, corresponding to (a-b) Sb@G_{0.25}N_{0.5}-450, (c-d) Sb@G_{0.25}N_{0.5}-700 and (e-f) Sb@G_{0.25}N_{0.5}-950, respectively.

Figure S7 SEM images of Sb/C composite prepared with different amount of glucose at 950 °C, corresponding to (a-b) Sb@G_{0.125}N_{0.5}-950, (c-d) Sb@G_{0.25}N_{0.5}-950 and (e-f) Sb@G_{0.5}N_{0.5}-950, respectively. The exposed hollow structure of Sb was marked with red circle in Figure S7b.

Figure S8 SEM images of (a-c) SnO_2/C and (d-e) Sn/C composite. (f) XRD patterns of SnO_2/C and Sn/C composite.

Figure S9 Electrochemical performance of Sn/C composite for sodium storage at 200 mA g⁻¹. (a) The initial two cycles of charging-discharging curves (b) cycling test

Figure S10 The Fourier transformed EXAFS of D 2 V electrode, $\underline{Sb@G_{0.25}N_{0.25}-950}$ powder pellet and Sb reference.

Figure S1. XRD patterns of samples obtained by annealing Sb(Ac)₃ at different temperature of (a) 150 °C, (b) 250 °C, (c) 350 °C, (d) 450 °C and (e) 700 °C under Ar atmosphere for 2 h. # represents the peaks belong to Sb₂O₃ (JCPDS no. 72-1334) while * represents the peaks belong to Sb₂O₃ (JCPDS no. 71-0383).

Figure S2 Raman spectroscopy of samples obtained from annealing Sb(Ac)₃ at 350 °C and 450 °C for 2 h, respectively.

Figure S3 XRD patterns of Sb/C composite (G/N= 0.25/0.25) prepared at 450 °C, 700 °C and 950 °C for 2 h, respectively.

Figure S4 (a) TGA curves measured in air and (b) Full-survey-scan XPS patterns of $\underline{Sb@G_{0.25}N_{0.25}-450}$, $\underline{Sb@G_{0.25}N_{0.25}-700}$ and $\underline{Sb@G_{0.25}N_{0.25}-950}$.

Figure S5 Three-dimensional carbon sheets bubble generated by sugar-blowing strategy involving the thermal decomposition of the well-mixed glucose and NH₄Cl at 950 $^{\circ}$ C for 2 h in Ar atmosphere.

Figure S6 SEM images of Sb/C composite prepared at different temperature of 450, 700 and 950 °C, corresponding to (a-b) $Sb@G_{0.25}N_{0.5}$ -450, (c-d) $Sb@G_{0.25}N_{0.5}$ -700 and (e-f) $Sb@G_{0.25}N_{0.5}$ -950, respectively.

Figure S7 SEM images of Sb/C composite prepared with different amount of glucose at 950°C, corresponding to (a-b) Sb@G_{0.125}N_{0.5}-950, (c-d) Sb@G_{0.25}N_{0.5}-950 and (e-f) Sb@G_{0.5}N_{0.5}-950, respectively. The exposed hollow structure of Sb was marked with red circle in Figure S7b.

Figure S8 SEM images of (a-c) SnO_2/C and (d-e) Sn/C composite. (f) XRD patterns of SnO_2/C and Sn/C composite.

Figure S9 Electrochemcial performance of Sn/C composite for sodium storage at 200 mA g⁻¹. (a) The initial two cycles of charging-discharging curves (b) cycling test

Figure S10 The Fourier transformed EXAFS of D 2 V electrode, $Sb@G_{0.25}N_{0.25}$ -950 powder pellet and Sb reference.