Supplementary materials

Oxygen Vacancies-enriched MoO_{3-x} Nanobelts for Asymmetric Supercapacitors

with Excellent Room/Low Temperature Performance

Qi-Long Wu,^{ab} Shi-Xi Zhao,^{*a} Le Yu,^{ab} Xiao-Xiao Zheng,^{ab} Yi-Feng Wang,^{ab} Lü-Qiang Yu,^{ab}

Ce-Wen Nan^b and Guozhong Cao^{*c}

^aGraduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.

^bSchool of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China

^c Department of Materials Science and Engineering, University of Washington, Seattle, WA

98195, USA.

*Corresponding author: Email: <u>zhaosx@sz.tsinghua.edu.cn</u> (S.X.Zhao); E-mail: <u>gzcao@uw.edu</u>

Relevant formulas:

The relevant calculation formulas for specific capacitance (C_s for single electrodes, C for asymmetric supercapacitor), energy density (E) and power density (P) are listed as follows:

$$C_{s} = \frac{I\Delta V_{1}}{m\Delta t_{1}}$$
(1)

$$C = \frac{I\Delta V_{2}}{m\Delta t_{2}}$$
(2)

$$E = \frac{C(\Delta V_{2})^{2}}{2 \times 3.6}$$
(3)

$$P = \frac{3600E}{\Delta t_2} \tag{4}$$

Where C_s and C (F g⁻¹) are the specific capacitance of single electrode and asymmetric supercapacitor respectively. I (A) is current. m (g) is the mass of active materials. ΔV_1 (V) and ΔV_2 (V) are the voltage windows of single electrode and asymmetric supercapacitor without IR drop, respectively. E (Wh kg⁻¹) is energy density and P (W kg⁻¹) is power density of asymmetric supercapacitor.

Figures:

Fig. S1 SEM images of MoO₃ nanobelts with different magnifications (a, b) and MoO_{3-x} nanobelts (c).

Fig. S2 TG (a) and BET (b) test results of MoO₃ and MoO_{3-x} nanobelts.

Fig. S3 XPS spectra of MoO_{3-x} nanobelts in different depth from 8 to 25 nm.

Fig. S4 (a) and (b) CV and GCD curves of MoO_3 nanobelts electrode tested in H_2SO_4 ; Comparison of MoO_3 and MoO_{3-x} nanobelts electrodes: (c) CV curves and (d) EIS plots.

Fig. S5 CV and GCD curves of MoO_{3-x} nanobelts electrode tested at $0^{\circ}C$.

Fig. S6 CV and GCD curves of AC//MoO_{3-x} tested at 0° C (a, b) and -25 $^{\circ}$ C (c, d).

Fig. S7 Linear relationship between z' and $\omega^{-1/2}$ in low frequency region.

Fig. S8 (a) and (b) SEM images of AC with different magnifications; (c) BET test result of AC.