
Electronic Supplementary Information

Reply to comment on "On the reproduction of $Li_3Fe_2(HPO_3)_3Cl$ —a short discussion on " $Li_3Fe_2(HPO_3)_3Cl$: an electroactive iron phosphite as a new polyanionic cathode material for Li-ion battery"

Hooman Yaghoobnejad Asl,^a Kartik Ghosh,^b Melissa P. Vidal Meza,^c Prashanth Sandineni,^a and Amitava Choudhury*^a

^{b.} Department of Physics, Astronomy and Materials Science and Center for Applied Science and Engineering, Missouri State University, Springfield, MO 65897, USA.

e. * E-mail: choudhurya@mst.edu

Figure S1. The Rietveld refinement employing GSAS-II (Toby & Von Dreele, J. Appl. Cryst. 46, 544-549, 2013), showing the observed, calculated and difference curve after the quantitative refinement of three-phases yielding 43%, 36% and 21% for $Li_3Fe_2(HPO_3)_3CI$, $Li_{1.43}[Fe_{4.43}||Fe_{0.57}|||(HPO_3)_6]\cdot 1.5H_2O$, and LiFePO₄, respectively. The final residual was wR = 3.33%.

^{a.} Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.

^c Department of Chemical and Biological Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.

^{d.} Corresponding author: Fax: (573)341-6033; Tel:(573)341-6332.