## **Electronic Supporting Information**

# Modular development of Metal Oxide / Carbon Composites for Electrochemical Energy Conversion and Storage

Yuanchun Ji,<sup>†a,b</sup> Yuan Ma,<sup>†b,c</sup> Rongji Liu,<sup>a</sup> Yanjiao Ma,<sup>b,c</sup> Kecheng Cao,<sup>d</sup> Ute Kaiser,<sup>d</sup> Alberto Varzi,<sup>b,c</sup> Yu-Fei Song,<sup>\*e</sup> Stefano Passerini,<sup>\*b,c</sup> and Carsten Streb<sup>\*a,b</sup>

<sup>a.</sup> Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.

<sup>b.</sup> Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, D-89081 Ulm, Germany

<sup>c.</sup> Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany

<sup>d.</sup> Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany

<sup>e.</sup> Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.

### **Corresponding Authors**

\*Email: <u>songyf@mail.buct.edu.cn;</u> \*Email: stefano.passerini@kit.edu;

\*Email: carsten.streb@uni-ulm.de

#### 1. Instrumentation

**High resolution scanning electron microscopy (HRSEM):** The morphology and structure of all samples was investigated via field-emission scanning electron microscopy (SEM, ZEISS 1550VP). Samples were measured at 10 k eV acceleration voltage.

**Transmission electron microscopy (TEM):** TEM was performed on JEOL JEM-1300 under an accelerating voltage of 200 kV.

**Aberration-corrected high-resolution electron microscopy (AC-HRTEM):** High resolution transmission electron microscopy was carried out using a Cs-corrected FEI 80-300 TEM operated at 80 and 300 kV. The aqueous solution of the respective materials was drop-cast on holey carbon films and air-dried.

**X-ray photoelectron spectroscopy (XPS):** XPS measurements were performed using monochromatized AI Kα radiation on a PHI Quantera SXM system. Peak fitting was done with the CasaXPS software using Shirley background subtraction and mixed Gaussian-Lorentzian peak shapes.

**FT-IR spectroscopy:** FT-IR spectroscopy was performed on a Shimadzu FT-IR-8400S spectrometer. Samples were prepared as KBr pellets.

**Thermogravimetric analysis (TGA):** TGA was performed on a Setaram Setsys CS Evo, 30 - 800 °C at 10 K/min, 50 mL/min N<sub>2</sub>, graphite crucible 0.5 mL.

Elemental Analysis was carried out on a CNH(S)-Analyser. Elementar Vario MICRO cube.

**Cyclic Voltammetry (CV):** CV measurements in oxygen evolution reaction were carried out on a CH Instruments CHI660E electrochemical workstation. And CV measurements in battery test

were carried in a VMP3 potentiostat (Bio-Logic Science Instruments), with the voltage range of 0.01-3.0 V.

**Battery capacity and galvanostatic charging/discharging** were measured on a Maccor 3000 battery tester, with the voltage range of 0.01-3.0 V.

**Powder X-ray diffraction (Powder XRD)** was collected on a Rigaku XRD-6000 diffractometer using Cu K $\alpha$  radiation ( $\lambda$  = 0.154 nm).

 $N_2$  sorption experiments were performed on an Quantachrome Autosorb-iQ. Data were analyzed using the Brunauer-Emmett-Teller (BET method).

**General remarks:** All chemicals were purchased from Sigma Aldrich, ABCR or VWR and were of reagent grade. The chemicals were used without further purification.

#### 2. Characterization



Figure S1. FT-IR spectra of TBA<sub>3</sub>{V<sub>10</sub>}, ZIF-67 and {V<sub>10</sub>}@ZIF-67.

The characteristic signals of  $TBA_3\{V_{10}\}$  are observed in the fingerprint region below 1000 cm<sup>-1</sup>. The bridging symmetric and asymmetric vibrations of V-O-V are observed at 585, 730, and 840 cm<sup>-1</sup>, respectively. The strong IR band at 960 cm<sup>-1</sup> is assigned to V-O<sub>terminal</sub> stretching vibrations.<sup>1–3</sup>



**Figure S2** TGA curves of ZIF-67, TBA<sub>3</sub>{V<sub>10</sub>} and {V<sub>10</sub>}@ZIF-67. Condition: N<sub>2</sub> atmosphere, 10  $^{\circ}$ C/min, graphite crucible 0.5 mL.



**Figure S3**. TEM images of a) pristine ZIF-67 pyrolyzed at 280 °C; b)  $\{V_{10}\}$ @**ZIF-67** pyrolyzed at 280 °C; c)  $\{V_{10}\}$ @**ZIF-67** pyrolyzed at 400 °C; HRTEM images of d), e) **CoVO/C** ( $\{V_{10}\}$ @**ZIF-67** pyrolyzed at 480 °C); and f) XPS survey spectrum of **CoVO/C**.



**Figure S4**. **Top:** Powder XRD pattern of **CoVO/C**. The database entries for  $Co_3V_2O_8$  (JCPDS: 16-0675) and  $CoV_3O_8$  (JCPDS: 22-0598) are shown in red and blue. Bottom left: powder XRD data for the reference materials. Bottom right: powder XRD data for native ZIF-67 pyrolyzed in N<sub>2</sub>.

Powder XRD (pXRD) showed the presence of the two crystalline Co-V-oxide phases  $Co_3V_2O_8$  (JCPDS card no. 16-0675) and  $CoV_3O_8$  (JCPDS card no. 22-0598) in **CoVO/C** (Figure. S4). Specifically, the (110), (220), (311), (400), (511) and (440) lattice planes of  $Co_3V_2O_8$  as well as the (200), (211), (411), (303), (114) and (532) planes of  $CoV_3O_8$  match well with the experimental pXRD pattern.



**Figure S5**. XPS deconvoluted spectra of **CoVO/C**, a) C 1s, b) N 1s, c) O 1s, d) Co 2p and e) V 2p.

|   | ZIF-67 (wt%) | {V <sub>10</sub> }@ZIF-67 (wt%) |
|---|--------------|---------------------------------|
| С | 37.59        | 33.63                           |
| Н | 4.23         | 4.75                            |
| Ν | 21.32        | 18.90                           |

Table S1. CHN elemental analysis of pristine ZIF-67 and {V10}@ZIF-67

Table S2. XPS elemental composition of CoVO/C

|       | atom-% | wt%  |
|-------|--------|------|
| C 1s  | 51.3   | 33.8 |
| N 1s  | 11.3   | 8.7  |
| O 1s  | 25.9   | 22.7 |
| V 2p  | 5.3    | 14.8 |
| Co 2p | 6.2    | 20.0 |



**Figure S6** a) Nitrogen-sorption isotherm at 77 K of **CoVO/C**; b) Nitrogen-sorption isotherm at 77 K of ZIF-67 pyrolyzed at 480 °C.



**Figure S7**. CV showing the first six cycles of **CoVO/C**-based electrode between 0.01 V and 3.0 V (scan rate:  $0.05 \text{ mV s}^{-1}$ ).

Cyclic voltammetry (CV) curves of the first six cycles are shown in Figure S7. In the first cathodic sweep, a minor peak centered at *ca*. 1.73 V is observed which has previously been assigned to the Li<sup>+</sup> insertion in CoV<sub>3</sub>O<sub>8</sub>.<sup>4</sup> Further, two peaks at *ca*. 1.23 and 0.77 V are observed, which have previously been attributed to the transformation of Co<sub>3</sub>V<sub>2</sub>O<sub>8</sub> to CoO and Li<sub>y</sub>V<sub>2</sub>O<sub>5</sub>, respectively.<sup>5,6</sup> The peak below 0.4 V is generally ascribed to the decomposition reaction of CoO to metallic Co and Li<sub>2</sub>O, and the Li-ion insertion into the carbon, as well as the formation of the solid-electrolyte interphase (SEI) layer.<sup>6–8</sup> During the anodic scan, an oxidation peak is observed at *ca*. 1.17 V, indicating the extraction of Li<sup>+</sup> from Li<sub>x</sub>V<sub>3</sub>O<sub>7</sub> and Li<sub>y</sub>V<sub>2</sub>O<sub>5</sub> and the conversion of metallic Co to CoO.<sup>4,5</sup> Furthermore, a broader peak at around 2.33 V could be associated with the extraction of Li<sup>+</sup> from Li<sub>y</sub>V<sub>2</sub>O<sub>5</sub>.<sup>5</sup> In the following cycling, only three distinct peaks at 1.1, 0.6 and < 0.3 V are observed, which are assigned to multi-step lithiation processes. In operando spectroscopic analyses are underway to gain more detailed insight into the active phases formed during electrochemical cycling.



**Figure S8.** Ex situ (a) SEM and (b) TEM micrographs of **CoVO/C** after cycling (100 (dis-)charge cycles at 200 mA  $g^{-1}$  vs. lithium metal).



**Figure S9**. Potential profiles of **CoVO/C** at various current densities based on the rate capability test (Figure 2c, main text).



**Figure S10**. Rate capability test for **CoVO/C** anodes at various current rates (cycle 1 - 160) and long cycling galvanostatic measurement for **CoVO/C** anodes (cycle 161 - 2000).



**Figure S11.** Comparison of Li-ion storage rate capability of **CoVO/C** and related literature systems:  $Co_3V_2O_8$  sponge network,<sup>9</sup> mesoporous  $Co_3V_2O_8$  nanoparticles,<sup>10</sup>  $Co_3V_2O_8$  hollow nanofibers,<sup>11</sup>  $Co_3V_2O_8$  multilayered nanosheets,<sup>6</sup>  $Co_3V_2O_8$  hexagonal pyramid,<sup>12</sup>  $Co_3V_2O_8 \cdot nH_2O$ ,<sup>5</sup>  $Co_3V_2O_8$  microspheres,<sup>13</sup>  $CoV_3O_8$  nanorods.<sup>4</sup>

**Table S3.** Comparison of the battery performance of the different POM-based and cobaltvanadate-based LIB anode materials

| Materials                                                                                      | RC (mAh g <sup>-1</sup> ) / maximum RC (mAh g <sup>-1</sup> )/ CD |                       | AMR (wt.%) | Ref.      |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|------------|-----------|
|                                                                                                | CD (mA g <sup>-1</sup> )                                          | (mA g <sup>-1</sup> ) |            |           |
| CoVO/C                                                                                         | 510/10,000<br>426/20,000                                          | 920/200               | 80         | This work |
| [SiMo <sub>12</sub> ]/MOF                                                                      | 370/1,000                                                         | 570/100               | 70         | 14        |
| [PMo <sup>V</sup> <sub>8</sub> Mo <sup>IV</sup> <sub>4</sub> Zn <sub>4</sub> ]-<br>based POMOF | 250/1,000                                                         | 600/100               | 70         | 15        |
| [PW <sub>12</sub> Cu <sub>10</sub> ]/MCF                                                       | 298/1,000                                                         | 553/100               | 70         | 16        |
| [PMo <sub>12</sub> V <sub>2</sub> ]-<br>ILs@MOFs                                               | 348/3,000                                                         | 930/200               | 70         | 17        |
| Co <sub>2</sub> V <sub>2</sub> O <sub>7</sub><br>microplatelets                                | 344/5,000                                                         | 813/200               | 70         | 18        |
| Co <sub>3</sub> V <sub>2</sub> O <sub>8</sub> <i>n</i> H <sub>2</sub> O                        | 496/5,000                                                         | 800/200               | 70         | 5         |
| $Co_3V_2O_8$<br>nanosheets                                                                     | 300/10,000                                                        | 880/200               | 70         | 6         |
| Co <sub>3</sub> O <sub>4</sub> @Co <sub>3</sub> V <sub>2</sub> O <sub>8</sub>                  | 578/5,000                                                         | 916/200               | 70         | 19        |
| [PW <sub>9</sub> Ni <sub>6</sub> ]-based<br>MOF                                                | NA                                                                | 350/400               | 65         | 20        |
| [PMo <sub>12</sub> V <sub>2</sub> ]-based<br>MOF/rGO                                           | 428/2,000                                                         | 846/200               | 70         | 21        |

POMOF: POM-based metal organic frameworks;

MCF: metal-carbene frameworks;

RC: Reversible capacity;

AMR: Active material ratio;

CD: Current density.

**Table S4**. Comparison of the OER performance of literature-known POM-MOF-based noble 

 metal-free catalysts

| Catalyst                                                                   | Loading  | Onset         | Overpotential                                  | Tafel slope             | Ref.      |
|----------------------------------------------------------------------------|----------|---------------|------------------------------------------------|-------------------------|-----------|
|                                                                            | density  | potential (V) | (mV) at 10 mA                                  | (mV dec <sup>-1</sup> ) |           |
|                                                                            | (mg/cm²) |               | cm-2                                           |                         |           |
| CoVO/C                                                                     | 0.3      | 1.5           | 350                                            | 75                      | This work |
| POM@ZIF-8                                                                  | ~0.6     |               | 784 (at 1 mA cm <sup>-</sup><br>², neutral pH) | 784                     | 22        |
| Mo <sub>x</sub> Co <sub>x</sub> C<br>particles                             | ~0.7     | 1.5           | 295                                            | 35                      | 23        |
| Co <sub>3</sub> O <sub>4</sub> /CoMoO <sub>4</sub>                         | ~0.25    | 1.47          | 318                                            | 63                      | 24        |
| NiCoP/C                                                                    | ~0.25    | 1.48          | 330                                            | 96                      | 25        |
| Co <sub>3</sub> O <sub>4</sub> /NiCo <sub>2</sub> O <sub>4</sub><br>cages  | 1.0      | 1.53          | 340                                            | 88                      | 26        |
| Co <sub>3</sub> ZnC/Co@CN                                                  | ~0.34    | 1.5           | 366                                            | 81                      | 27        |
| NCNTFs                                                                     | 0.2      | 1.47          | 370                                            | 93                      | 28        |
| Ni-Co mixed<br>oxide cages                                                 |          | 1.56          | 380                                            | 50                      | 29        |
| Co@NCNT                                                                    | ~0.42    | 1.58          | 429                                            | 116                     | 30        |
| CoMoO₄                                                                     | ~0.24    | 1.6           | 410                                            | 84                      | 31        |
| Co <sub>3</sub> O <sub>4</sub>                                             | ~0.14    | 1.52          | 400                                            | 72                      | 32        |
| CoV <sub>2</sub> O <sub>6</sub> -<br>V <sub>2</sub> O <sub>5</sub> /NRGO-1 | ~0.14    |               | 239                                            | 50                      | 33        |

#### **References:**

- 1 I. Omri, T. Mhiri and M. Graia, *J. Mol. Struct.*, 2015, **1098**, 324–331.
- P. Román, A. Aranzabe, A. Luque, J. M. Gutiérrez-Zorrilla and M. Martínez-Ripoll, J.
   *Chem. Soc. Dalt. Trans.*, 1995, 0, 2225–2231.
- 3 G. C. Ou, L. Jiang, X. L. Feng and T. B. Lu, *Dalt. Trans.*, 2009, **0**, 71–76.
- 4 G. H. Jeong, I. Lee, D. Lee, H.-M. Lee, S. Baek, O.-P. Kwon, P. N. Kumta, S. Yoon and S.-W. Kim, *Nanotechnology*, 2018, **29**, 195403.
- 5 F. Wu, S. Xiong, Y. Qian and S.-H. Yu, *Angew. Chemie Int. Ed.*, 2015, **54**, 10787–10791.
- 6 G. Yang, H. Cui, G. Yang and C. Wang, *ACS Nano*, 2014, **8**, 4474–4487.
- Y. Luo, X. Xu, X. Tian, Q. Wei, M. Yan, K. Zhao, X. Xu and L. Mai, *J. Mater. Chem. A*, 2016, 4, 5075–5080.
- Y. Ma, Y. Ma, D. Geiger, U. Kaiser, H. Zhang, G. T. Kim, T. Diemant, R. J. Behm, A.
   Varzi and S. Passerini, *Nano Energy*, 2017, 42, 341–352.
- V. Soundharrajan, B. Sambandam, J. Song, S. Kim, J. Jo, S. Kim, S. Lee, V. Mathew and J. Kim, ACS Appl. Mater. Interfaces, 2016, 8, 8546–8553.
- G. Gao, S. Lu, B. Dong, Y. Xiang, K. Xi and S. Ding, *J. Mater. Chem. A*, 2016, 4, 6264–6270.
- 11 J. Xiang, X.-Y. Yu and U. Paik, J. Power Sources, 2016, 329, 190–196.
- Q. Zhang, J. Pei, G. Chen, C. Bie, D. Chen, Y. Jiao and J. Rao, *Electrochim. Acta*, 2017, 238, 227–236.
- H. Chai, Y. Wang, Y. Fang, Y. Lv, H. Dong, D. Jia and W. Zhou, *Chem. Eng. J.*, 2017, 326, 587–593.
- 14 X.-Y. Yang, T. Wei, J.-S. Li, N. Sheng, P.-P. Zhu, J.-Q. Sha, T. Wang and Y.-Q. Lan, *Inorg. Chem.*, 2017, **56**, 8311–8318.

- Q. Huang, T. Wei, M. Zhang, L.-Z. Dong, A.-M. Zhang, S.-L. Li, W.-J. Liu, J. Liu and Y.-Q. Lan, *J. Mater. Chem. A*, 2017, **5**, 8477–8483.
- 16 P.-P. Zhu, N. Sheng, M.-T. Li, J.-S. Li, G.-D. Liu, X.-Y. Yang, J.-Q. Sha, M.-L. Zhu and J. Jiang, *J. Mater. Chem. A*, 2017, **5**, 17920–17925.
- 17 M. Zhang, A. M. Zhang, X. X. Wang, Q. Huang, X. Zhu, X. L. Wang, L. Z. Dong, S. L. Li and Y. Q. Lan, *J. Mater. Chem. A*, 2018, 6, 8735–8741.
- 18 F. Wu, C. Yu, W. Liu, T. Wang, J. Feng and S. Xiong, *J. Mater. Chem. A*, 2015, 3, 16728–16736.
- 19 Y. Lu, L. Yu, M. Wu, Y. Wang and X. W. D. Lou, *Adv. Mater.*, 2018, **30**, 1702875.
- Y. Yue, Y. Li, Z. Bi, G. M. Veith, C. A. Bridges, B. Guo, J. Chen, D. R. Mullins, S. P. Surwade, S. M. Mahurin, H. Liu, M. P. Paranthaman and S. Dai, *J. Mater. Chem. A*, 2015, 3, 22989–22995.
- T. Wei, M. Zhang, P. Wu, Y. Tang, S. Li, F. Shen and X. Wang, *Nano Energy*, 2017, 34, 205–214.
- 22 S. Mukhopadhyay, J. Debgupta, C. Singh, A. Kar and S. K. Das, *Angew. Chemie Int. Ed.*, 2018, **57**, 1918–1923.
- 23 C. Chen, A. Wu, H. Yan, Y. Xiao, C. Tian and H. Fu, *Chem. Sci.*, 2018, **9**, 4746–4755.
- L. Zhang, T. Mi, M. A. Ziaee, L. Liang and R. Wang, *J. Mater. Chem. A*, 2018, 6, 1639– 1647.
- 25 P. He, X. Y. Yu and X. W. D. Lou, *Angew. Chemie Int. Ed.*, 2017, **56**, 3897–3900.
- 26 H. Hu, B. Guan, B. Xia and X. W. Lou, *J. Am. Chem. Soc.*, 2015, **137**, 5590–5595.
- J. Su, G. Xia, R. Li, Y. Yang, J. Chen, R. Shi, P. Jiang and Q. Chen, *J. Mater. Chem. A*, 2016, 4, 9204–9212.
- B. Y. Xia, Y. Yan, N. Li, H. Bin Wu, X. W. D. Lou and X. Wang, *Nat. Energy*, 2016, 1, 15006.
- 29 L. Han, X. Y. Yu and X. W. (David) Lou, *Adv. Mater.*, 2016, **28**, 4601–4605.

- 30 E. Zhang, Y. Xie, S. Ci, J. Jia, P. Cai, L. Yi and Z. Wen, *J. Mater. Chem. A*, 2016, **4**, 17288–17298.
- 31 Y. Yang, S. Wang, C. Jiang, Q. Lu, Z. Tang and X. Wang, *Chem. Mater.*, 2016, **28**, 2417–2423.
- 32 Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W. Bin Cai, Z. Yang and G. Zheng, *Adv. Energy Mater.*, 2014, **4**, 1400696.
- 33 F.-C. Shen, Y. Wang, Y.-J. Tang, S.-L. Li, Y.-R. Wang, L.-Z. Dong, Y.-F. Li, A. Yan Xu and Y.-Q. Lan, *ACS Energy Lett.*, 2017, **2**, 1327–1333.