-Supporting Information-

Hierarchical Chemomechanical Encoding of Multi-

Responsive Hydrogel Actuators via 3D Printing

Jérémy Odent, *a Sophie Vanderstappen, a Antoniya Toncheva, a, b Enzo Pichon, a Thomas J.

Wallin,^{c,d} Kaiyang Wang,^c Robert F. Shepherd,^c Philippe Dubois,^a Jean-Marie Raquez^{*a}

^aLaboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium.

^bLaboratory of Bioactive polymers, Institute of Polymers, Bulgarian academy of sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria.

^cSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

^dFacebook Reality Labs, Redmond, Washington, USA.

E-mails: jeremy.odent@umons.ac.be ; jean-marie.raquez@umons.ac.be.

Figure S1. Complex viscosity with illumination time during photo-polymerization of NIPAM and CEA.

Figure S2. Schematic of the three separate 3D-printed chemomechanical gradients. (A) Distribution of the calculated surface area to volume ratio via mechanical design into the multi-armed gripper (left) and the flower-like (right) structures as a function of Z-height in the hydrogel actuator. (B) Distribution of the crosslinking density via different UV photo-exposure time (left) and the chemical composition via resin vat exchange (right) as a function of Z-height in the hydrogel actuator.

Figure S3. Power-Law fits (a) and swelling *vs*. the square root of immersion time plots (b) of the osmotic swelling rate of PNIPAM cubic lattices with different designed S:V ratios.

Figure S4. Deswelling performance of 3D-printed PNIPAM cubic lattices with different S:V ratios.

Figure S5. Detailed first cycle of the osmotically driven actuation of 3D-printed gradient-like PNIPAM structures of varying S:V ratio along the printing Z-axis.

Figure S6. Oscillation amplitude sweeps of PNIPAM-based hydrogels with different crosslinking density by means of controlling the near-UV exposure time (a); An estimation of the effective crosslinking density as determined by modulus measurements in the rubbery plateau (b).

Figure S7. Deswelling performance of 3D-printed PNIPAM-based hydrogels with different crosslinking density by means of controlling the near-UV exposure time.

Figure S8. Power-Law fits (a) and swelling *vs*. the square root of immersion time plots (b) of the swelling rate of PNIPAM-based hydrogels with different crosslinking density by means of controlling the near-UV exposure time.

Figure S9. Detailed first cycle of the thermally driven actuation of 3D-printed gradient-like PNIPAM structures of variable crosslinking density along the printing Z-axis.

Figure S10. Detailed first cycle of the pH-controlled actuation of 3D-printed gradient-like structures of varying layer's composition along the printing Z-axis.

Table S1. Characteristics and bending performances of the three separate synthetic strategies for

 programming in chemomechanical gradients.

Strategies	Surface Area to	Crosslinking	Chemical
	Volume Ratio	Density	Composition
Geometries	HIMME ANOM		
Dimensions	2 cm length	2 cm length	2 cm length
	0.4 cm thickness	0.18 cm thickness	0.18 cm thickness
Stimuli	Osmotic pressure	Temperature	рН
	90 sec in ethanol	15 min in distilled water	45 min in citrate-
	(from flat to curved)	at 25°C	phosphate buffer
		(from flat to curved)	at pH 3
			(from flat to curved)
Time of	150 sec in heptane	15 min in distilled water	20 min in citrate-
actuation	(from curved to flat)	at 50°C	phosphate buffer
		(from curved to flat)	At pH 8
			(from curved to flat)
Curvature	1.4 cm ⁻¹	1.55 cm ⁻¹	1.75 cm ⁻¹
upon actuation			