Electronic Supplementary Information

One-pot Synthesized Molybdenum Dioxide-Molybdenum Carbide Heterostructures Coupled with 3D Holey Carbon Nanosheets for Highly Efficient and Ultrastable Cycling Lithium-Ion Storage

Chuanxin Hou,^{a, g#} Jun Wang,^{a#} Wei Du,^b Jianchuan Wang,^e Yong Du,^e Chuntai Liu,^c

Jiaoxia Zhang,^f Hua Hou,^g Feng Dang,^{a*} Lanling Zhao,^{d*} and Zhanhu Guo^{g*}

- a. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China E-mail : <u>dangfeng@sdu.edu.cn</u>
- b. School of Environment and Material Engineering, Yantai University, Yantai 264005, Shandong, China
- c. Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
- d. School of Physics, Shandong University, Jinan, 250100, P.R. China E-mail : <u>lanling@sdu.edu.cn</u>
- e. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
- f. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- g. Scanning Probe Microscopy Group, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN, 37831, USA

These authors contributed equally.

Fig.	Fig. S1 TGA curves of MoO ₂ /C samplePage 3											
Fig. S2 SEM images of $MoO_2/Mo_2C/C$ precursors before carbonation processes and MoO_2+Mo_2C												
mixturesPage 4												
Fig.	S 3	Cha	rge-diso	charge	pr	ofiles	of Mo	oO ₂ /Mo ₂ C/C	electrodes	at	different	current
dens	densities Page 5											
Fig. S4 Cycling performance and coulombic efficiency of MoO_2/C and Mo_2C/C electrodes at												
curr	current density of 0.1 A g ⁻¹ Page 6											
Fig. S5 Fitting curves of $i/v^{1/2}$ responses plotted against $v^{1/2}$ for cathodic scans and anodic												
scansPage 7												
Fig. S6 XPS survey of the as-prepared $MoO_2/Mo_2C/C$ electrodes after 200 cycles at the current												
density of 0.1 A g ⁻¹ Page 8												
Fig. S7 DOS of MoO_2 and Mo_2C Page 9												
Fig.	S8	A	unite	cell	of	MoO ₂	and	corresponding	g differen	tial	electron	density
distr	listributionPage 10											
Fig.	S9	A	unite	cell	of	Mo ₂ C	and	corresponding	g differen	tial	electron	density
distr	distributionPage 11											
Fig. S10 EIS curve of MoO ₂ + Mo ₂ C electrode before cyclingPage 12												

Fig. S1 TGA and DTA curve of MoO₂/C samples.

The TGA analysis of MoO₂/C nanocomposites was carried out to calculate the MoO₂, Mo₂C and carbon content in MoO₂/Mo₂C/C nanocomposites. In order to keep carbon content consistent, the MoO₂/C and MoO₂/Mo₂C/C samples were prepared from the same precursors, just with different carbonation temperature. A 32.66 % weight of carbon and 69.34 % weight of MoO₂ were obtained according to the TGA results of MoO₂/C nanocomposites in Fig. S3. The weight of carbon of ca. 32.66 % in MoO₂/Mo₂C/C samples was extrapolated. Then the content of MoO₂ and Mo₂C was further calculated through the reaction as follows:

$$2MoO_2 + 3C = Mo_2C + 2CO_2$$
 (1)

$2MoO_2 + O_2 = 2MoO_3$ (2)	ļ

 $Mo_2C + 4O_2 = 2MoO_3$ (3)

Fig. S2 SEM images of MoO₂/Mo₂C/C precursors before carbonation processes (a, b); SEM images

of MoO_2+Mo_2C mixtures blended together by grinding (c, d).

Fig. S3 Charge/discharge curves of $MoO_2/Mo_2C/C$ electrodes with vary current densities from 0.1to 10.0 A g⁻¹.

Fig. S4 Cycling performance of MoO_2/C (a) and Mo_2C/C (b) electrodes at 0.1 A g⁻¹.

Fig. S5 Fitting curves of $i/v^{1/2}$ responses plotted against $v^{1/2}$ for cathodic (a) and anodic scans (b).

Fig. S6 XPS survey of the as-prepared $MoO_2/Mo_2C/C$ electrodes after 200 cycles at the current density of 0.1 A g⁻¹.

Fig. S7 Density of states of MoO_2 (a) and Mo_2C (b).

Fig. S8 A unite cell of MoO_2 (a) and corresponding differential electron density distribution (b).

Fig. S9 A unite cell of Mo₂C (a) and corresponding differential electron density distribution (b).

Fig. S10 EIS curve of MoO₂ + Mo₂C electrode before cycling.