### **Supplementary Information**

# **Continuously Oxygen Vacancy Engineering of Co<sub>3</sub>O<sub>4</sub> Layer for Enhanced Alkaline Electrocatalytic Hydrogen Evolution Reaction**

Haoxuan Zhang,<sup>a</sup> Jiahao Zhang,<sup>a</sup> Yuhang Li,<sup>\*b</sup> Haibo Jiang,<sup>a</sup> Hao Jiang,<sup>\*ab</sup> Chunzhong Li <sup>ab</sup>

<sup>a</sup> Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical

Engineering, East China University of Science and Technology, Shanghai 200237, China

<sup>b</sup> Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials

Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

\*Email: <u>yuhangli@ecust.edu.cn</u> (Dr. Y. Li) and <u>jianghao@ecust.edu.cn</u> (Prof. H. Jiang)

### **Part I: Experimental Section**

#### 1.1 Synthesis of the Ov-engineered Co<sub>3</sub>O<sub>4</sub> layer

Before use, nickel foams (0.5 cm  $\times$  0.6 cm  $\times$  0.3 mm) were soaked in 3 M HCl for 20 min to remove impurities on the surface. The O<sub>v</sub>-engineered Co<sub>3</sub>O<sub>4</sub> layer was synthesized by a rapid solid-phase melting strategy. In a typical synthesis of the medium crystallinity Co<sub>3</sub>O<sub>4</sub> layer (M-Co<sub>3</sub>O<sub>4</sub>), 2 mmol of Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O were put into a 3 mL flask. Then, a piece of Ni foam was inserted into the flask and heated to 200 °C for 20 min in a muffle furnace in static air. After cooled down to room temperature, washed with distilled water and absolute ethanol for three times, the M-Co<sub>3</sub>O<sub>4</sub> sample was obtained. The crystallinity of Co<sub>3</sub>O<sub>4</sub> film can be regulated by changing reaction temperature to 160 and 240 °C in the synthesis of Co<sub>3</sub>O<sub>4</sub> layers with high and low O<sub>v</sub> contents (H-Co<sub>3</sub>O<sub>4</sub> and L-Co<sub>3</sub>O<sub>4</sub>), respectively.

#### **1.2 Characterization**

The X-ray powder diffraction (XRD) patterns were measured on a Rigaku D/Max 2550 diffractometer with Cu Kα radiation at a scan rate of 1° min<sup>-1</sup>. The hydrophilic-hydrophobic properties were measured by Harke, SPCA-X-3 meter. The scanning electron microscope (SEM) and transmission electron microscope (TEM) images were obtained from Hitachi, S-4800 at an accelerating voltage of 15.0 kV and Tecnai, G2F30 S-Twin with an energy-dispersive X-ray spectrometer (EDX) at an accelerating voltage of 200.0 kV, respectively. Inductively coupled plasma mass spectrometry (ICP-MS) was recorded by an Agilent 7700 spectrometer. The electrical conductivities were measured using a model RTS-8 four-point probe meter.X-ray photoelectron spectroscopy (XPS) spectra were recorded by an

ESCALAB 250Xi X-ray photoelectron spectrometer at a pass energy of 40 eV with an Al Kα X-ray source.

#### **1.3 Electrochemical Measurements**

All electrochemical measurements applied in a CHI660E electrochemical workstation (Chenhua, Shanghai) were carried out in a standard three-electrode system consisting of a saturated Ag/AgCl reference electrode, a graphite counter electrode and a 30 mL 1.0 M KOH electrolyte. The samples grown on nickel foam were directly applied as working electrode. The measured potential was calibrated to reversible hydrogen electrode (RHE) potential according to the following equation:

$$E_{RHE} = E_{Ag/AgCl} + 0.1976 + 0.0591 \times pH$$

Prior to HER measurement, pure N<sub>2</sub> was purged into electrolyte to reach N<sub>2</sub>-saturated condition. The N<sub>2</sub> flow remained during the whole test process. HER polarization curves were recorded by linear sweep voltammetry technique at a scan rate of 1 mV s<sup>-1</sup>. The stability of electrocatalysts was measured by chronopotentiometry at constant current densities of 10, 50 and 100 mA cm<sup>-2</sup>, respectively. Electrochemical impedance spectroscopy (EIS) was performed at -0.2 V *vs*. RHE in a wide frequency ranging (10 kHz - 100 mHz) with a current voltage amplitude of 5 mV. Ohmic resistance was estimated from the EIS results at a phase angle of 0° in high frequency. All data was compensated with 95% *iR* correction. Electrochemically active surface area (ECSA) was calculated by the following equation:

$$ECSA = C_{DL}/C_S$$

where  $C_{DL}$  is double layer capacitance,  $C_S$  is specific capacitance. The  $C_{DL}$  is obtained through the multi-rate CV method in non-faradic potential range,<sup>[S1]</sup> where the scan rates are 50, 100, 200, 400, 600 and 800 mV s<sup>-1</sup>, respectively. The Cs of Co is 27 uF cm<sup>-2</sup> in alkaline media reported by the previous literature.<sup>[S2]</sup> Turnover frequency (TOF) was estimated from the following equation:

$$TOF = J \times A/2 \times n \times F$$

where *J* is the current density in HER polarization curves, *A* is geometric area of electrode, *F* is Faraday constant (C mol<sup>-1</sup>), and *n* is mole number of active sites on the electrode.

# **Part II: Supporting Figures**



Fig. S1 Low-magnification SEM images of the (a) pristine Ni foam and (b) M-Co<sub>3</sub>O<sub>4</sub>.



Fig. S2 SEM images of the (a) H-Co<sub>3</sub>O<sub>4</sub> and (b) L-Co<sub>3</sub>O<sub>4</sub> samples.



Fig. S3 Low-magnification TEM image of the M-Co<sub>3</sub>O<sub>4</sub> sample.



Fig. S4 HER polarization curves of the Co<sub>3</sub>O<sub>4</sub> samples before iR drop.



**Fig. S5** Cyclic voltammogram curves of the H-Co<sub>3</sub>O<sub>4</sub>, M-Co<sub>3</sub>O<sub>4</sub> and L-Co<sub>3</sub>O<sub>4</sub> electrodes in the non-faradic potential range at different sweep rates.



**Fig. S6** Capacitive currents as a function of sweep rate of the  $H-Co_3O_4$ ,  $M-Co_3O_4$  and  $L-Co_3O_4$  electrodes measured at 0.96 V *vs.* RHE. The double-layer capacitances are calculated from the slope of the linear fitting to the data.



Fig. S7 Co contents of the H-Co<sub>3</sub>O<sub>4</sub>, M-Co<sub>3</sub>O<sub>4</sub> and L-Co<sub>3</sub>O<sub>4</sub> samples on Ni foam.



**Fig. S8** Mass-normalized HER polarization curves of the H-Co<sub>3</sub>O<sub>4</sub>, M-Co<sub>3</sub>O<sub>4</sub> and L-Co<sub>3</sub>O<sub>4</sub> electrodes.



Fig. S9 Turnover frequencies of the H-Co<sub>3</sub>O<sub>4</sub>, M-Co<sub>3</sub>O<sub>4</sub> and L-Co<sub>3</sub>O<sub>4</sub> electrodes.

# Part III: Supporting Table

| Catalyst                                                             | Measurement               | Loading<br>(mg cm <sup>-2</sup> ) | J<br>(mA cm <sup>-2</sup> ) | η<br>(mV)        | Tafel slope<br>(mV dec <sup>-1</sup> ) | Ref.         |
|----------------------------------------------------------------------|---------------------------|-----------------------------------|-----------------------------|------------------|----------------------------------------|--------------|
| Phosphorus-doped<br>Co <sub>3</sub> O <sub>4</sub> nanowire<br>array | Ni foam<br>1.0 M KOH      | 10.7                              | -10<br>-100                 | 97<br>205        | 86                                     | 10           |
| Co-P@Co <sub>3</sub> O <sub>4</sub>                                  | Carbon cloth<br>1.0 M KOH | 3.0                               | -10                         | 73               | 85                                     | 11           |
| Octahedral Co <sub>3</sub> O <sub>4</sub><br>particles               | Co foam<br>1.0 M KOH      | 3.9                               | -10<br>-100                 | 78<br>210        | 88                                     | 12           |
| Co <sub>3</sub> O <sub>4</sub> nanocrystals                          | Carbon fiber<br>1.0 M KOH | 0.35                              | -10                         | 380              | 116                                    | 13           |
| Co\Co <sub>3</sub> O <sub>4</sub><br>nanosheets                      | Ni foam<br>1.0 M KOH      | 0.85                              | -10<br>-100                 | 90<br>240        | 44                                     | 14           |
| $Co_3O_4$ nanorods                                                   | Co foil<br>1.0 M KOH      | 2.2                               | -10                         | 268              | /                                      | 15           |
| Urchin-like Co <sub>3</sub> O <sub>4</sub><br>sphere arrays          | Ni foam<br>1.0 M KOH      | 4.2                               | -10                         | 225              | 68                                     | 16           |
| Hollow Co <sub>3</sub> O <sub>4</sub><br>microtube arrays            | Ni foam<br>1.0 M KOH      | \                                 | -100                        | 292              | 98                                     | 17           |
| M-C03O4                                                              | Ni foam<br>1.0 M KOH      | 1.03                              | -10<br>-50<br>-100          | 71<br>180<br>203 | 63                                     | This<br>work |
| L-Co <sub>3</sub> O <sub>4</sub>                                     | Ni foam<br>1.0 M KOH      | 1.33                              | -10<br>-50<br>-100          | 79<br>209<br>249 | 107                                    | This<br>work |
| H-Co <sub>3</sub> O <sub>4</sub>                                     | Ni foam<br>1.0 M KOH      | 0.72                              | -10<br>-50<br>-100          | 82<br>243<br>301 | 143                                    | This<br>work |

Table S1 Comparison of HER performances of the reported Co<sub>3</sub>O<sub>4</sub> electrocatalysts.

### References

[S1] C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977-16987.

[S2] G. Wu, N. Li, D. R. Zhou, K. Mitsuo and B. Q. Xu, J. Solid State Chem., 2004, 177, 3682-3692.