Supporting Information:

Kinetic Well-matched Full-carbon Sodium-ion Capacitor

Kangyu Zou,^a Peng Cai,^a Cheng Liu,^a Jiayang Li,^a Xu Gao,^a Laiqiang Xu,^a Guoqiang

Zou, *a Hongshuai Hou, a Zuming Liu, *b and Xiaobo Jia

^a College of Chemistry and Chemical Engineering, Central South University,

Changsha, 410083, China.

^b State Key Laboratory of Powder Metallurgy, Central South University,

Changsha, 410083, China.

Corresponding Author

- * Email address: gq-zou@csu.edu.cn;
- * Email address: <u>lzm@csu.edu.cn;</u> Tel: +86-731-88836355

Figure S1 (a) TGA of commercial EDTA-4Na \cdot 4H₂O under N₂ condition. (b) XRD patterns of as-obtained products with different thermolysis temperatures before washing.

Figure S2 (a) The N1s high-resolution spectrum of NHPC-600. (b) The N1s high-resolution spectrum of NHPC-1000.

Figure S3 (a) XRD pattern, (b) Raman spectrum, (c) XPS survey spectrum, and (d) N1s high-resolution spectrum of NHPAC.

Figure S4 CV curves and GCD profiles of **NHPC-800**//**NHPAC** SICs with different mass ratios (**a**, **b**) 1:1, (**c**, **d**) 1:2, (**e**, **f**) 1:3.

Figure S5 (a) CV curves and (b) GCD profiles of NHPC-800//AC SIC with the optimized mass ratio. (c) The comparison of Ragone plots between NHPC-800//AC SIC and NHPC-800//NHPAC SIC.

Figure S6 Cycling stability of **NHPC-800**//**NHPAC** SICs with different mass ratios at 1 A g⁻¹ for 10000 cycles within 0-4.0 V.

Carbon anode	Cycling performance (mAh g ⁻¹)	rate capability (mAh g ⁻¹)	References
Natural graphite	145 at 0.2 A g ⁻¹	100 at 0.5 A g ⁻¹	S 1
	after 2500 cycles	112 at 3 A g ⁻¹	
Expanded graphite	136 at 0.1 A g ⁻¹	284 at 0.02 A g ⁻¹	S2
	after 2000 cycles	184 at 0.1 A g ⁻¹	
3D amorphous arbon	188 at 0.3 A g ⁻¹	280 at 0.03 A g ⁻¹	S3
	after 600 cycles	66 at 9.6 A g ⁻¹	
Hollow carbon nanosphere	s 160 at 0.1 A g ⁻¹	142 at 0.5 A g ⁻¹	S4
	after 100 cycles	100 at 2 A g ⁻¹	
Carbon nanotubes	130 at0.1 A g ⁻¹	108 at 0.05 A g ⁻¹	S5
	after 600 cycles	50 at 1 A g ⁻¹	
N-doped carbon nanoshee	s 155 at 0.05 A g ⁻¹	190 at 0.2 A g ⁻¹	S6
	after 200 cycles	~ 50 at 2 A g ⁻¹	
P-doped carbon cloth	164 at 0.2 A g ⁻¹	215.5 @0.1 A g ⁻¹	S7
	after 600 cycles	123.1 @1 A g ⁻¹	
S-covalently bonded	150 at 1 A g-1	262 at 0.1 A g ⁻¹	S 8
grapheme	after 200 cycles	161 at 1 A g ⁻¹	
F and N co-doped	203 at 0.05 A g ⁻¹	197 mAh g ⁻¹ at 0.05 A g ⁻¹	S9
graphene	after 50 cycles	50 mAh g ⁻¹ at1 A g ⁻¹	
S-doped N-rich	211 at 1 A g ⁻¹	300 at 0.1 A g ⁻¹	S10
carbon nanosheets	after 1000 cycles	220 at 1 A g ⁻¹	
NHPC-800	197 at 2 A g ⁻¹	386 at 0.1 A g ⁻¹	This work
	after 1000 cycles	176 at 5 A g ⁻¹	

Table **S1**. Comparison of electrochemical properties for carbon anodes between our work and the previous reports.

References

- S1. Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen, K. L. Jungjohann, Y. Xu, Y. Zhu, D. Bigio, T. Zhu, *Nano Lett.*, 14 (2014) 3445-3452.
- S2. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun., 5 (2014) 4033.
- S3. P. Lu, Y. Sun, H. Xiang, X. Liang and Y. Yu, Adv. Energy Mater., 8 (2017) 1702434.
- S4. K. Tang, L. Fu, R. J. White, L. Yu, M. M. Titirici, M. Antonietti and J. Maier, Adv. Energy Mater., 2 (2012) 873-877.
- S5. S. Licht, A. Douglas, J. Ren, R. Carter, M. Lefler and C. L. Pint, ACS Cent. Sci., 2 (2016) 162-168.
- S6. H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang and X. B. Zhang, *ChemSusChem*, 6 (2013) 56-60.
- S7. H. Y. Lü, X. H. Zhang, F. Wan, D. S. Liu, C. Y. Fan, H. M. Xu, G. Wang and X. L. Wu, ACS Appl. Mat. Interfaces, 9 (2017) 12518-12527.
- S8. X. Wang, G. Li, F. M. Hassan, J. Li, X. Fan, R. Batmaz, X. Xiao and Z. Chen, *Nano Energy*, 15 (2015) 746-754.
- S9. H. An, Y. Li, Y. Gao, C. Cao, J. Han, Y. Feng and W. Feng, Carbon, 116 (2017) 338-346.
- S10. J. Yang, X. Zhou, D. Wu, X. Zhao and Z. Zhou, Adv. Mater., 29 (2017) 1604108.