Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Co-spray printing of LiFePO₄ and PEO-Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ hybrid electrodes for all-

solid-state Li-ion battery applications

Junfu Bu, *a, b Puiki Leung, a Chun Huang, a Sang Ho Lee, a and Patrick S. Grant *a, b

^a Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.

^b Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, UK.

E-mail address: junfu.bu@materials.ox.ac.uk (Dr. J. Bu), patrick.grant@materials.ox.ac.uk

(Prof. P.S. Grant)

Fig. S1 SEM images of how the electrode coating structure evolved as a function of spray cycles at 130 °C (blue line box) and 160 °C (red line box).

Fig. S2 Cross-sectional SEM image of the honeycomb electrode at 160 °C after 20 spray cycles, with through thickness pores highlighted.

Fig. S3 Volumetric capacity as a function of C-rate for non-honeycomb (NH) LFP-based electrodes formed at substrate temperatures of 130 to150 °C and honeycomb (H) LFP-based electrodes formed at substrate temperatures of 160 to 180 °C.