Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Impact of Na_2MoO_4 nanolayers autogenously formed on tunnel-type $Na_{0.44}MnO_2$

Ji Ung Choi^{a,‡}, Jae Hyeon Jo^{a,‡}, Chang-Heum Jo^a, Min Kyoung Cho^a, Yun Ji Park^a, Yongcheng Jin*^{b,c} Hitoshi Yashiro^d, and Seung-Taek Myung^{*,a}

^aDepartment of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Seoul 05006, South Korea

^bInterphase Technology for Energy Materials Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong 266-101, P. R. China

^cSchool of Materials Science and Engineering, Ocean University of China, 238, Songling Road, Qingdao, 266100, P. R. China

^dDepartment of Chemical Engineering, Iwate University, Iwate 020-8551, Japan

^{*}Corresponding author

E-mail: jinyc@qibebt.ac.cn (Y. Jin), smyung@sejong.ac.kr (S. Myung)

Fig. S1. Thermogravimetric analysis (TGA) curve of $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$.

Fig. S2. XRD patterns of Na₂MoO₄ produced in simulated environment obtained at 350 °C for 5 h in air: (top) NaOH + (NH₄)₆Mo₇O₂₄·4H₂O and (bottom) Na₂CO₃ + (NH₄)₆Mo₇O₂₄·4H₂O.

Fig. S3. Bright-field TEM images of the as-synthesized Na_{0.44}MnO₂ powders.

Fig. S4. (a) Charge-discharge curves and (b) cyclability of $Na_{0.44}MnO_2$ with different amount of Na_2MoO_3 coating medium; (c) bright-field TEM images of the 1.5 wt. % and 2.5 wt. % Na_2MoO_3 -coated $Na_{0.44}MnO_2$ powders.

Formula Crystal system			Na _{0.44} MnO ₂ (Na ₄ Mn ₉ O ₁₈) Orthorhombic			
Atom		x	У		z	g
Na1	0.2	2064	0.4155		0.5	0.5
Na2	0.1269		0.0051		0	0.5
Na3	0.2	2077	0.2051		0	0.5
Mn1	0.3	3572	0.3061		0.5	0.5
Mn2	0.0142		0.1081		0	0.5
Mn3	0.0314		0.3066		0	0.5
Mn4	0.3	0.3618		0.0903		0.5
Mn5	0		0.5		0	0.25
01	0.3	0.3631		0.0049		0.5
O2	0.2	0.2223		0.0933		0.5
03	0.0496		0.1610		0.5	0.5
O4	0.4181		0.1641		0.5	0.5
05	0.1621		0.2833		0.5	0.5
O6	0.4100		0.2632		0	0.5
O7	0.3150		0.3562		0	0.2423
08	0.4999		0.0754		0	0.7084
09	0.4688		0.4354		0.5	0.7053
Sample	<i>a</i> -axis / Å	<i>b</i> -axis / Å	c-axis / Å	R _{wp /} %	Electrical conductivity / S cm ⁻¹	
Bare	9.0976(9)	26.4431(6)	2.8246(9)	8.5%	2×10^{-6}	
Coated	9.0920(7)	26.4452(1)	2.8242(2)	8.8%	8×10^{-5}	

Table S1. Rietveld refinement results of XRD data for bare and Na_2MoO_3 -coated $Na_{0.44}MnO_2$ compounds.

Table S2. Residual Na_2CO_3 and NaOH contents of bare and Na_2MoO_4 -coated $Na_{0.44}MnO_2$ samples from Warder titration.

Na _{0.44} MnO ₂	рН	Na ₂ CO ₃ [ppm]	NaOH [ppm]	Total [ppm]
Bare	11.37	9,850	7,840	17,690
Coated	11.01	5,616	4,900	10,516

Table S3. HF titration results for extensively cycled bare and Na_2MoO_4 -coated $Na_{0.44}MnO_2$ cathode tested in Na cells.

Na _{0.44} MnO ₂	HF [ppm]
Bare	192
Coated	82

Tunnel-type material	Voltage	Current density	1 st discharge capacity	Capacity retention	Rate capability	ref
Bare Na _{0.44} MnO ₂ (This work)	1.5 - 4.3 V	12 mA g ⁻¹	110 mAh g ⁻¹	72 % over 200 cycles	1 % (7.2 A g ⁻¹ / 12mA g ⁻¹)	-
Na ₂ MoO ₄ -coated Na _{0.44} MnO ₂ (This work)	1.5 - 4.3 V	12 mA g ⁻¹	120 mAh g ⁻¹	86 % over 200 cycles	67 % (7.2 A g ⁻¹ / 12mA g ⁻¹)	-
Na _{0.44} MnO ₂	2.0 - 3.8 V	12.1 mA g ⁻¹	107 mAh g ⁻¹	100 % over 20 cycles	84 % (1.21 A g ⁻¹ / 12.1 mA g ⁻¹)	1
Na _{0.44} MnO ₂	2.0 - 4.0 V	60 mA g ⁻¹	108 mAh g ⁻¹	97.8 % over 100 cycles	86 % (1.2 A g ⁻¹ / 12 mA g ⁻¹)	2
Na _{0.44} MnO ₂	2.0 - 4.2 V	60 mA g ⁻¹	112 mAh g ⁻¹	98 % over 100 cycles	73 % (6.0 A g ⁻¹ / 12 mA g ⁻¹)	4
Na _{0.44} MnO ₂	1.5 - 4.0 V	24.2 mA g ⁻¹	118 mAh g ⁻¹	100 % over 150 cycles	93 % (1.21 A g ⁻¹ / 24.2 mA g ⁻¹)	6
Na _{0.44} [Mn _{0.44} Ti _{0.56}]O ₂	1.5 - 3.9 V	12 mA g ⁻¹	110 mAh g ⁻¹	90 % over 100 cycles	-	33
$Na_{0.61}Ti_{0.48}Mn_{0.52}O_2$	1.5 – 4.0 V	20 mA g ⁻¹	86 mAh g ⁻¹	81 % over 100 cycles	36 % (500 mA g ⁻¹ / 20 mA g ⁻¹)	44
Na _{0.61} [Mn _{0.27} Fe _{0.34} Ti _{0.39}]O ₂	2.6 – 4.2 V	8 mA g ⁻¹	70 mAh g ⁻¹	90 % over 100 cycles	42 % (400 mA g ⁻¹ / 20 mA g ⁻¹)	45

 Table S4. Comparison of electrode performance for several tunnel-structured cathode materials.